gaussian processes

  • Trong Nghia Hoang and Bryan Kian Hsiang Low and Patrick Jaillet and Mohan Kankanhalli

    Nonmyopic $\epsilon$-Bayes-Optimal Active Learning of Gaussian Processes (pdf)

    A fundamental issue in active learning of Gaussian processes is that of the exploration-exploitation trade-off. This paper presents a novel nonmyopic $\epsilon$-Bayes-optimal active learning ($\epsilon$-BAL) approach that jointly and naturally optimizes the trade-off. In contrast, existing works have primarily developed myopic/greedy algorithms or performed exploration and exploitation separately. To perform active learning in real time, we then propose an anytime algorithm based on $\epsilon$-BAL with performance guarantee and empirically demonstrate using synthetic and real-world datasets that, with limited budget, it outperforms the state-of-the-art algorithms.

  • Robert Grande and Thomas Walsh and Jonathan How

    Sample Efficient Reinforcement Learning with Gaussian Processes (pdf)

    This paper derives sample complexity results for using Gaussian Processes (GPs) in both model-based and model-free reinforcement learning (RL). We show that GPs are KWIK learnable, proving for the first time that a model-based RL approach using GPs, GP-Rmax, is sample efficient (PAC-MDP). However, we then show that previous approaches to model-free RL using GPs take an exponential number of steps to find an optimal policy, and are therefore not sample efficient. The third and main contribution is the introduction of a model-free RL algorithm using GPs, DGPQ, which is sample efficient and, in contrast to model-based algorithms, capable of acting in real time, as demonstrated on a five-dimensional aircraft simulator.

  • Filipe Rodrigues and Francisco Pereira and Bernardete Ribeiro

    Gaussian Process Classification and Active Learning with Multiple Annotators (pdf)

    Learning from multiple annotators took a valuable step towards modelling data that does not fit the usual single annotator setting. However, multiple annotators sometimes offer varying degrees of expertise. When disagreements arise, the establishment of the correct label through trivial solutions such as majority voting may not be adequate, since without considering heterogeneity in the annotators, we risk generating a flawed model. In this paper, we extend GP classification in order to account for multiple annotators with different levels expertise. By explicitly handling uncertainty, Gaussian processes (GPs) provide a natural framework to build proper multiple-annotator models. We empirically show that our model significantly outperforms other commonly used approaches, such as majority voting, without a significant increase in the computational cost of approximate Bayesian inference. Furthermore, an active learning methodology is proposed, which is able to reduce annotation cost even further.

  • Jose Miguel Hernandez-Lobato and Neil Houlsby and Zoubin Ghahramani

    Probabilistic Matrix Factorization with Non-random Missing Data (pdf)

    We propose a probabilistic matrix factorization model for collaborative filtering that learns from data that is missing not at random(MNAR). Matrix factorization models exhibit state-of-the-art predictive performance in collaborative filtering. However, these models usually assume that the data is missing at random (MAR), and this is rarely the case. For example, the data is not MAR if users rate items they like more than ones they dislike. When the MAR assumption is incorrect, inferences are biased and predictive performance can suffer. Therefore, we model both the generative process for the data and the missing data mechanism. By learning these two models jointly we obtain improved performance over state-of-the-art methods when predicting the ratings and when modeling the data observation process. We present the first viable MF model for MNAR data. Our results are promising and we expect that further research on NMAR models will yield large gains in collaborative filtering.

  • Emile Contal and Vianney Perchet and Nicolas Vayatis

    Gaussian Process Optimization with Mutual Information (pdf)

    In this paper, we analyze a generic algorithm scheme for sequential global optimization using Gaussian processes. The upper bounds we derive on the cumulative regret for this generic algorithm improve by an exponential factor the previously known bounds for algorithms like GP-UCB. We also introduce the novel Gaussian Process Mutual Information algorithm (GP-MI), which significantly improves further these upper bounds for the cumulative regret. We confirm the efficiency of this algorithm on synthetic and real tasks against the natural competitor, GP-UCB, and also the Expected Improvement heuristic.

  • Jasper Snoek and Kevin Swersky and Rich Zemel and Ryan Adams

    Input Warping for Bayesian Optimization of Non-Stationary Functions (pdf)

    Bayesian optimization has proven to be a highly effective methodology for the global optimization of unknown, expensive and multimodal functions. The ability to accurately model distributions over functions is critical to the effectiveness of Bayesian optimization. Although Gaussian processes provide a flexible prior over functions, there are various classes of functions that remain difficult to model. One of the most frequently occurring of these is the class of non-stationary functions. The optimization of the hyperparameters of machine learning algorithms is a problem domain in which parameters are often manually transformed a priori, for example by optimizing in "log-space", to mitigate the effects of spatially-varying length scale. We develop a methodology for automatically learning a wide family of bijective transformations or warpings of the input space using the Beta cumulative distribution function. We further extend the warping framework to multi-task Bayesian optimization so that multiple tasks can be warped into a jointly stationary space. On a set of challenging benchmark optimization tasks, we observe that the inclusion of warping greatly improves on the state-of-the-art, producing better results faster and more reliably.

  • David Barber and Yali Wang

    Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations (pdf)

    Bayesian parameter estimation in coupled ordinary differential equations (ODEs) is challenging due to the high computational cost of numerical integration. In gradient matching a separate data model is introduced with the property that its gradient can be calculated easily. Parameter estimation is achieved by requiring consistency between the gradients computed from the data model and those specified by the ODE. We propose a Gaussian process model that directly links state derivative information with system observations, simplifying previous approaches and providing a natural generative model.

  • Xuezhi Wang and Tzu-Kuo Huang and Jeff Schneider

    Active Transfer Learning under Model Shift (pdf)

    Transfer learning algorithms are used when one has sufficient training data for one supervised learning task (the source task) but only very limited training data for a second task (the target task) that is similar but not identical to the first. These algorithms use varying assumptions about the similarity between the tasks to carry information from the source to the target task. Common assumptions are that only certain specific marginal or conditional distributions have changed while all else remains the same. Alternatively, if one has only the target task, but also has the ability to choose a limited amount of additional training data to collect, then active learning algorithms are used to make choices which will most improve performance on the target task. These algorithms may be combined into active transfer learning, but previous efforts have had to apply the two methods in sequence or use restrictive transfer assumptions. We propose two transfer learning algorithms that allow changes in all marginal and conditional distributions but assume the changes are smooth in order to achieve transfer between the tasks. We then propose an active learning algorithm for the second method that yields a combined active transfer learning algorithm. We demonstrate the algorithms on synthetic functions and a real-world task on estimating the yield of vineyards from images of the grapes.

2013-2014 ICML | International Conference on Machine Learning