Affinity Workshop
|
Mon 8:55 |
Computation of Discrete Flows Over Networks via Constrained Wasserstein Barycenters Ferran Arque · Cesar Uribe |
|
Spotlight
|
Wed 7:30 |
Bayesian Optimistic Optimisation with Exponentially Decaying Regret Hung Tran-The · Sunil Gupta · Santu Rana · Svetha Venkatesh |
|
Poster
|
Wed 9:00 |
Bayesian Optimistic Optimisation with Exponentially Decaying Regret Hung Tran-The · Sunil Gupta · Santu Rana · Svetha Venkatesh |
|
Spotlight
|
Wed 18:20 |
Gaussian Process-Based Real-Time Learning for Safety Critical Applications Armin Lederer · Alejandro Ordóñez Conejo · Korbinian Maier · Wenxin Xiao · Jonas Umlauft · Sandra Hirche |
|
Poster
|
Wed 21:00 |
Gaussian Process-Based Real-Time Learning for Safety Critical Applications Armin Lederer · Alejandro Ordóñez Conejo · Korbinian Maier · Wenxin Xiao · Jonas Umlauft · Sandra Hirche |
|
Oral
|
Thu 5:00 |
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients Artem Artemev · David Burt · Mark van der Wilk |
|
Spotlight
|
Thu 5:20 |
Isometric Gaussian Process Latent Variable Model for Dissimilarity Data Martin Jørgensen · Søren Hauberg |
|
Spotlight
|
Thu 5:25 |
Variational Auto-Regressive Gaussian Processes for Continual Learning Sanyam Kapoor · Theofanis Karaletsos · Thang Bui |
|
Spotlight
|
Thu 5:30 |
Sparse within Sparse Gaussian Processes using Neighbor Information Gia-Lac Tran · Dimitrios Milios · Pietro Michiardi · Maurizio Filippone |
|
Spotlight
|
Thu 5:35 |
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data Maud Lemercier · Cristopher Salvi · Thomas Cass · Edwin V Bonilla · Theo Damoulas · Terry Lyons |
|
Spotlight
|
Thu 5:40 |
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth |
|
Spotlight
|
Thu 5:45 |
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition Shengyang Sun · Jiaxin Shi · Andrew Wilson · Roger Grosse |