Oral Session
|
Tue 6:00 |
Deep Learning (Bayesian) |
|
Spotlight
|
Wed 18:20 |
KO codes: inventing nonlinear encoding and decoding for reliable wireless communication via deep-learning Ashok Vardhan Makkuva · Xiyang Liu · Mohammad Vahid Jamali · Hessam Mahdavifar · Sewoong Oh · Pramod Viswanath |
|
Poster
|
Wed 21:00 |
KO codes: inventing nonlinear encoding and decoding for reliable wireless communication via deep-learning Ashok Vardhan Makkuva · Xiyang Liu · Mohammad Vahid Jamali · Hessam Mahdavifar · Sewoong Oh · Pramod Viswanath |
|
Spotlight
|
Tue 6:25 |
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation Aurick Zhou · Sergey Levine |
|
Poster
|
Tue 9:00 |
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation Aurick Zhou · Sergey Levine |
|
Poster
|
Tue 9:00 |
What Are Bayesian Neural Network Posteriors Really Like? Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson |
|
Oral
|
Tue 6:00 |
What Are Bayesian Neural Network Posteriors Really Like? Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson |
|
Spotlight
|
Tue 6:30 |
Deep kernel processes Laurence Aitchison · Adam Yang · Sebastian Ober |
|
Poster
|
Tue 9:00 |
Deep kernel processes Laurence Aitchison · Adam Yang · Sebastian Ober |
|
Spotlight
|
Tue 7:35 |
Graph Mixture Density Networks Federico Errica · Davide Bacciu · Alessio Micheli |
|
Poster
|
Tue 9:00 |
Graph Mixture Density Networks Federico Errica · Davide Bacciu · Alessio Micheli |
|
Poster
|
Tue 9:00 |
Better Training using Weight-Constrained Stochastic Dynamics Benedict Leimkuhler · Tiffany Vlaar · Timothée Pouchon · Amos Storkey |