

Direct Induction Proof Challenge: Evaluating Large Language Models on Deeply Nested Mathematical Induction

Risako Ando, Koji Mineshima, Mitsuhiro Okada (Keio University, Japan)

Background & Research Question

- Automating mathematical induction has been studied since the 1970s [Boyer & Moore, 1979], but full automation still presents challenges.
- Modern proof assistants require user guidance or lemmas for anything beyond simple proofs.
- While LLMs have shown promise in proof generation [Lightman et al., 2024], they often rely on learned lemmas or library-based tactics.
- Question: Can LLMs generate proofs from scratch, i.e., entirely from definitions and mathematical induction without helper lemmas or libraries?
- Goal: We investigate the capacity of LLMs to construct deeply nested induction proofs without relying on predefined lemmas.

Experimental Setting

Models: GPT-4o, GPT-3.5, Llama-3-70B

Problems: 20 arithmetic statements involving primitive-

recursively defined addition and multiplication

Two settings: Each model is prompted to generate both informal English proofs and formal Lean 4 proofs.

ID	Example Problem	#variable	#depth
1	a+1=1+a	1	1
6	$a \times b = b \times a$	2	4
14	$(a+b)\times c = (a\times c) + (b\times c)$	3	2
16	$(a + b) \times (c + d) = ((a \times c) + (a \times d)) + ((b \times c) + (b \times d))$	4	4

Informal Proof Task in English

- **Direct task**: No external lemmas/tactics allowed
- Lemma task: All used lemmas must be proven.
- Only provided two-shot examples on addition
 - \circ Proofs of a + succ(0) = succ(a) and a + b = b + a
- ✓ Human evaluation

Formal Proof Task in Lean 4

- Direct and Lemma tasks
- Library task: Use of libraries (Mathlib) allowed, but no automation.
- Iterative attempts using Lean error feedback

The numbers indicate the correct proofs out of the 20 problems.

✓ Lean verification

Results

Informal Proof Results (GPT-40)

- 5/20 correct under the **direct** proof criterion
- 14/20 correct under relaxed criteria (including semi-direct/indirect proofs)
- Common issue: incorrect use of definition
 - \circ E.g., the model used a + succ(b) = succ(a + b) (Right Rule), while the definition is succ(a) + b = succ(a + b) (Left Rule)
- Challenge: proving and structuring auxiliary lemmas

Evaluation criteria:

- Direct: Only definitions and induction
- Semi-direct: Allows left/right addition & multiplication
- **Indirect**: Correct, but not direct or semi-direct

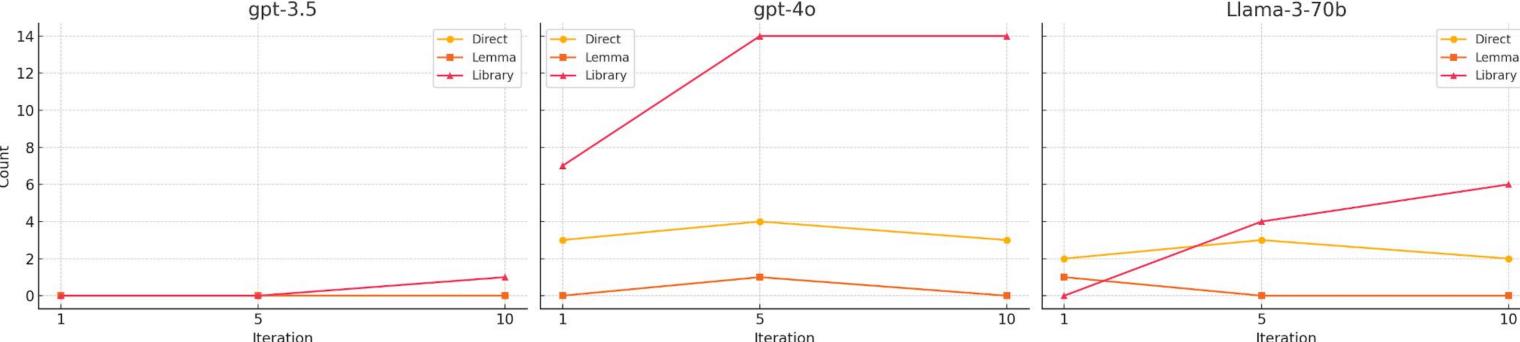
Direct Induction Semi-Direct Induction Indirect Proof Type

Observations: Generalization abilities of LLMs

- Although the provided samples involved only addition, the model proved a multiplication theorem (ID-8) by direct induction, showing generalization beyond addition.
- Given only double induction samples, it successfully proved a triple induction case (ID-12) under relaxed criteria.

Formal Proof Results

- **Direct/Lemma** tasks remain difficult across all models.
- No improvement from Lean error[§] feedback after 1, 5, or 10 iterations in **Direct/Lemma** tasks.



Summary: LLMs show promising generalization in informal settings but struggle with strict direct induction proof construction. Deeper induction remains a significant challenge for automated theorem proving.