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Motivation and Background



Motivation: An Unfair Comparison

Autoregressive
+

Causal Attention

Masked Diffusion Model
+

Full Attention

Unfair!

Masked Diffusion Model
+

Causal Attention

Formulation Architecture

Autoregressive Model
(AR)

• Causal Attention
• Decoder-Only

Masked Diffusion Model
(MDM)

• Full Attention
• Encoder-Only
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Motivation: Efficiency Comparison

Training Efficiency (Token Utilization)
• Decoder-only AR: near 100%

• Encoder-only BERT: 15%∼25%

• Encoder-only MDM: 50% on average

• Decoder-only MDM: near 100%

Density Estimation Efficiency (on a fixed L2R order)
• Decoder-only AR: O(n)

• Encoder-only MDM: O(n2) (but more flexible)

• Decoder-only MDM: O(n) (also flexible)

Generation Efficiency
• Decoder-only AR with KV-cache: O(n)

• Encoder-only MDM: O(Tn), where T is the generation steps

• Decoder-only MDM with KV-cache: O(n)

3



Training MDM with Causal Attention: MDM is Equivalent to Any-Order AR

LMDM =
∫ 1

0

1
t Eqt|0(xt |x0)

 ∑
i :x i

0=[MASK]

− log pθ(x i
0|x t)

 dt

= n · El∼U(1,...,n)
1

n − l + 1Eσ∼U(Sn)

n∑
r=l

− log pθ(xσr |xσ<l )

= Eσ∼U(Sn)

[
n∑

i=1

− log pθ (xσi |xσ<i )

]
= LAO-AR

Two existing decoder-only architectures for training any-order
autoregressive models: XL-Net and σ-GPT.

• XL-Net incorporates the target position using two-stream
attention, which differs from current architectures.

• σ-GPT incorporates the target position through an additional
target positional encoding on a standard GPT architecture.
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AO-GPT: A Decoder-Only Model for Flexible Order Modeling

Our AO-GPT incorporates two key enhancements upon σ-GPT:
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Figure 1: Target position information injections: (a) σ-GPT (b) ours.

1. Adaptive layerNorm (adaLN) for target position information.

2. Exponential Moving Average (EMA).
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AO-GPT: A Decoder-Only Model for Flexible Order Modeling
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Figure 2: Combined effect of AdaLN and EMA.

Experiment Settings in this paper:

Base Repo: NanoGPT Data: OpenWebText

Evaluation: LAMBADA, WikiText, PTB, LM1B

Context Length: 1024 Model Size: Small (125M), Medium (355M) 6



Part 1: AR vs. MDM
(in Decoder-Only Setting)



Finding 1: Any-Order Training Converges Slower

Finding 1

Any-Order GPT converges significantly slower in the initial training stages
compared to its standard GPT counterpart, even with the same decoder-
only architecture.
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Figure 3: Training loss curves for standard AR (GPT2-Small) and
Any-Order AR (AO-GPT-Small).

7



Finding 2: Language Has a Strong Left-to-Right (L2R) Bias

Finding 2.1 & 2.2

Even when trained on a single fixed order, the standard L2R order con-
verges much faster than an arbitrary, randomly selected fixed order.
A fixed block-wise random order interpolates between L2R and purely
random order in terms of convergence speed.
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Figure 4: Convergence speed with different fixed prediction orders. 8



Finding 3: A Little L2R Guidance Goes a Long Way

Finding 3

Incorporating a small fraction (10%) of L2R ordered data into AO-GPT
training drastically improves performance on both L2R evaluation and
Any-Order evaluation.
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Figure 5: Adding 10% L2R data improves convergence and final loss for
both tasks.
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Summary of Part 1

• MDM is equivalent to training on uniform order distributions,
which is not aligned with language’s inherent left-to-right
structure.

• Future MDM research could explore non-uniform order
distributions to better align with language structure.
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Part 2: Encoder vs. Decoder (for
MDMs)



Finding 4: A Massive Difference in Modeled Conditionals

Encoder-only and Decoder-only models learn fundamentally
different conditional probability spaces.

Encoder-Only: Order-Invariant
The prediction p(x j |xE ) is conditioned on an unordered set of
context tokens. The model learns n · 2n−1 unique conditional
probabilities.

Decoder-Only: Order-Dependent
The prediction p(x j |xE , σE ) is conditioned on an ordered sequence
of context tokens. The model must learn ≈ e · n! distinct
conditional probabilities.

Key Insight
The decoder’s task is combinatorially larger, which may explain
performance differences.
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Finding 5: Ensembling Context Order Fills the PPL Gap

Finding 5

Decoder-only AO-AR initially shows higher perplexity than its Encoder-
only counterpart. However, ensembling predictions over random permu-
tations of the context order bridges this performance gap.

pens(xσi |xσ<i ) = 1
M

M∑
j=1

pθ

(
xσi |xpermj (σ<i ), permj(σ<i)

)
.
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Figure 6: Zero-shot perplexity improves as the number of context order
ensembles increases, approaching encoder-only (SEDD) performance. 12



Findings 6 & 7: Decoders Offer Massive Generation Speedups

Finding 6: Complexity

• Encoder: O(n2)
• Decoder: O(n)

(with KV-cache & efficient
sampling)

Finding 7: Speed

AO-GPT can achieve 25×
speedup on generation
compared with SEDD.
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Figure 7: AO-GPT is ∼ 25× faster
in generation time than SEDD.
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Summary of Part 2

• Different generation complexity (linear vs. quadratic).
• Many advantages attributed to MDMs may, in fact, stem

from the powerful full attention mechanism they employ,
rather than the modeling formulation itself.

• The flexibility of causal MDM gives the potential to unify AR
and MDM paradigms in a single model

14



Thank You!

Code is available at:
https://github.com/scxue/AO-GPT-MDM
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