Any-Order GPT as Masked Diffusion Model: Decoupling Formulation and Architecture

Shuchen $Xue^{1,\ 2}$ Tianyu Xie^3 Tianyang Hu^4 Zijin $Feng^5$ Jiacheng Sun^5 Kenji Kawaguchi 4 Zhenguo Li^5 Zhi-Ming $Ma^{1,\ 2}$ ES-FoMo @ ICML 2025 July 19, 2025

Speaker: Brian K Chen⁴

¹University of Chinese Academy of Sciences

²Academy of Mathematics and Systems Science, Chinese Academy of Sciences

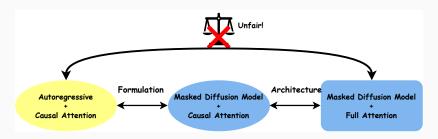
³Peking University

⁴National University of Singapore

⁵Huawei Noah's Ark Lab

Motivation and Background

Motivation: An Unfair Comparison



Autoregressive Model (AR)

- Causal Attention
- Decoder-Only

Masked Diffusion Model (MDM)

- Full Attention
- Encoder-Only

Motivation: Efficiency Comparison

Training Efficiency (Token Utilization)

Decoder-only AR: near 100%

■ Encoder-only BERT: 15%~25%

Encoder-only MDM: 50% on average

Decoder-only MDM: near 100%

Density Estimation Efficiency (on a fixed L2R order)

Decoder-only AR: O(n)

Encoder-only MDM: O(n²) (but more flexible)

Decoder-only MDM: O(n) (also flexible)

Generation Efficiency

- Decoder-only AR with KV-cache: O(n)
- Encoder-only MDM: O(Tn), where T is the generation steps
- Decoder-only MDM with KV-cache: O(n)

Training MDM with Causal Attention: MDM is Equivalent to Any-Order AR

$$\begin{split} \mathcal{L}_{\text{MDM}} &= \int_{0}^{1} \frac{1}{t} \mathbb{E}_{q_{t}|_{0}(\mathbf{x}_{t}|\mathbf{x}_{0})} \left[\sum_{i: x_{0}^{i} = [\text{MASK}]} -\log p_{\theta}(\mathbf{x}_{0}^{i}|\mathbf{x}_{t}) \right] dt \\ &= n \cdot \mathbb{E}_{l \sim U(1, \dots, n)} \frac{1}{n - l + 1} \mathbb{E}_{\sigma \sim \mathcal{U}(S_{n})} \sum_{r = l}^{n} -\log p_{\theta}(\mathbf{x}_{\sigma_{r}}|\mathbf{x}_{\sigma_{< l}}) \\ &= \mathbb{E}_{\sigma \sim \mathcal{U}(S_{n})} \left[\sum_{i = 1}^{n} -\log p_{\theta}\left(\mathbf{x}_{\sigma_{i}}|\mathbf{x}_{\sigma_{< i}}\right) \right] = \mathcal{L}_{\text{AO-AR}} \end{split}$$

Two existing decoder-only architectures for training any-order autoregressive models: XL-Net and σ -GPT.

- XL-Net incorporates the target position using two-stream attention, which differs from current architectures.
- ullet $\sigma\text{-GPT}$ incorporates the target position through an additional target positional encoding on a standard GPT architecture.

AO-GPT: A Decoder-Only Model for Flexible Order Modeling

Our AO-GPT incorporates two key enhancements upon σ -GPT:

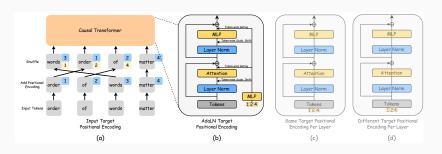


Figure 1: Target position information injections: (a) σ -GPT (b) ours.

- 1. Adaptive layerNorm (adaLN) for target position information.
- 2. Exponential Moving Average (EMA).

AO-GPT: A Decoder-Only Model for Flexible Order Modeling

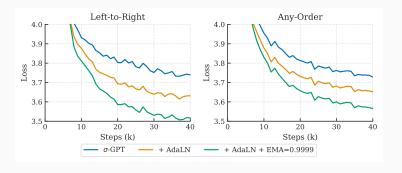


Figure 2: Combined effect of AdaLN and EMA.

Experiment Settings in this paper:

Base Repo: NanoGPT Data: OpenWebText

Evaluation: LAMBADA, WikiText, PTB, LM1B

Context Length: 1024 Model Size: Small (125M), Medium (355M)

(in Decoder-Only Setting)

Part 1: AR vs. MDM

Finding 1: Any-Order Training Converges Slower

Finding 1

Any-Order GPT converges significantly slower in the initial training stages compared to its standard GPT counterpart, even with the same decoder-only architecture.

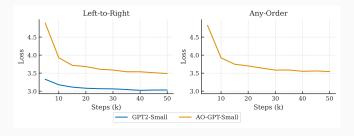


Figure 3: Training loss curves for standard AR (GPT2-Small) and Any-Order AR (AO-GPT-Small).

Finding 2: Language Has a Strong Left-to-Right (L2R) Bias

Finding 2.1 & 2.2

Even when trained on a single fixed order, the standard L2R order converges much faster than an arbitrary, randomly selected fixed order. A fixed block-wise random order interpolates between L2R and purely random order in terms of convergence speed.

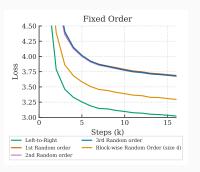


Figure 4: Convergence speed with different fixed prediction orders.

Finding 3: A Little L2R Guidance Goes a Long Way

Finding 3

Incorporating a small fraction (10%) of L2R ordered data into AO-GPT training drastically improves performance on ${\bf both}$ L2R evaluation and Any-Order evaluation.

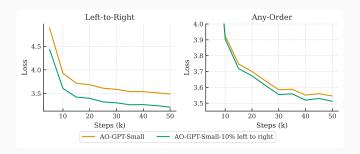


Figure 5: Adding 10% L2R data improves convergence and final loss for both tasks.

Summary of Part 1

- MDM is equivalent to training on uniform order distributions, which is not aligned with language's inherent left-to-right structure.
- Future MDM research could explore non-uniform order distributions to better align with language structure.

Part 2: Encoder vs. Decoder (for

MDMs)

Finding 4: A Massive Difference in Modeled Conditionals

Encoder-only and Decoder-only models learn fundamentally different conditional probability spaces.

Encoder-Only: Order-Invariant

The prediction $p(x_j|x_E)$ is conditioned on an *unordered set* of context tokens. The model learns $n \cdot 2^{n-1}$ unique conditional probabilities.

Decoder-Only: Order-Dependent

The prediction $p(x_j|x_E, \sigma_E)$ is conditioned on an *ordered sequence* of context tokens. The model must learn $\approx e \cdot n!$ distinct conditional probabilities.

Key Insight

The decoder's task is combinatorially larger, which may explain performance differences.

Finding 5: Ensembling Context Order Fills the PPL Gap

Finding 5

Decoder-only AO-AR initially shows higher perplexity than its Encoderonly counterpart. However, ensembling predictions over random permutations of the context order bridges this performance gap.

$$p_{\mathsf{ens}}(\boldsymbol{x}_{\sigma_i}|\boldsymbol{x}_{\sigma_{< i}}) = \frac{1}{M} \sum_{j=1}^{M} p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{\sigma_i}|\boldsymbol{x}_{\mathsf{perm}_j(\sigma_{< i})}, \mathsf{perm}_j(\sigma_{< i})\right).$$

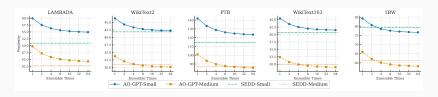


Figure 6: Zero-shot perplexity improves as the number of context order ensembles increases, approaching encoder-only (SEDD) performance.

Findings 6 & 7: Decoders Offer Massive Generation Speedups

Finding 6: Complexity

• Encoder: $O(n^2)$

• Decoder: O(n)

(with KV-cache & efficient sampling)

Finding 7: Speed

AO-GPT can achieve $25 \times$ speedup on generation compared with SEDD.

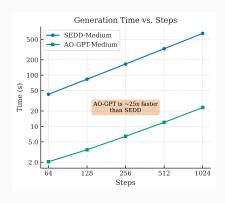


Figure 7: AO-GPT is $\sim 25 \times$ faster in generation time than SEDD.

Summary of Part 2

- Different generation complexity (linear vs. quadratic).
- Many advantages attributed to MDMs may, in fact, stem from the powerful full attention mechanism they employ, rather than the modeling formulation itself.
- The flexibility of causal MDM gives the potential to unify AR and MDM paradigms in a single model

Thank You!

Code is available at:

https://github.com/scxue/AO-GPT-MDM