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Abstract

Scaling language models to handle longer input sequences typically necessitates large key-
value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we
propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decom-
positions to represent queries, keys, and values compactly, substantially shrinking the KV cache
size at inference time. By factorizing these representations into contextual low-rank components
and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved
model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT
ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through exten-
sive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or
matches the performance of standard Transformer baselines, including Multi-Head Attention
(MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head
Latent Attention (MLA) across various metrics, including perplexity and a range of established
evaluation benchmarks. Notably, TPA’s memory efficiency and computational efficiency at
the decoding stage enable processing longer sequences under fixed resource constraints, ad-
dressing a critical scalability challenge in modern language models. The code is available at
https://github.com/tensorgi/TPA.

1 Introduction

Large language models (LLMs) have revolutionized natural language processing, demonstrating
exceptional performance across tasks [4, 11, 57, 5]. As these models evolve, their ability to process
longer contexts becomes increasingly important for sophisticated applications such as document
analysis, complex reasoning, and code completion. However, managing longer sequences during
inference poses significant computational and memory challenges, particularly due to the storage
of key-value (KV) caches [69, 33]. Because memory consumption grows linearly with sequence
length, the maximum context window is limited by practical hardware constraints.

A variety of solutions have been explored to address this memory bottleneck. Some approaches
compress or selectively prune cached states through sparse attention patterns [9] or token eviction
strategies [69, 61, 41], though such methods risk discarding tokens that may later prove important.

* Equal contribution; ⋄ Project lead; † Corresponding author.
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Figure 1: Tensor Product Attention (TPA) within the Tensor ProducT ATTenTion Transformer
(T6). In each TPA layer, the input hidden state xt is processed by linear layers to produce la-
tent factor matrices for query (e.g., AQ(xt),BQ(xt)), key (e.g., AK(xt),BK(xt)), and value (e.g.,
AV (xt),BV (xt)). Rotary Position Embedding (RoPE) is applied to the BQ(xt) and BK(xt) factors.
The query, key, and value tensors for each attention head are then formed by the tensor product of
these factor matrices (e.g., Qt =

1
RQ

AQ(xt)
⊤BQ(xt)). Finally, the TPA output is computed using

scaled dot-product attention, followed by a linear projection of the concatenated results from all
heads.

Other work proposes off-chip storage of key-value states [16], at the expense of increased I/O
latency. Attention variants like Multi-Query Attention (MQA) [45] and Grouped-Query Attention
(GQA) [2] reduce per-token cache requirements by sharing keys and values across heads, but
often compromise flexibility or require significant architectural modifications. Meanwhile, low-
rank weight factorization methods such as LoRA [19] effectively reduce fine-tuning memory,
yet do not address the KV cache overhead that dominates inference at runtime. The recently
introduced Multi-Head Latent Attention (MLA) in Deepseek-V2 [31] caches compressed key-value
representations but encounters difficulties with efficient Rotary Position Embedding (RoPE) [51]
integration, necessitating additional position-encoded parameters per head.

To overcome the limitations of existing approaches, we introduce Tensor Product Attention
(TPA), illustrated in Figure 1. TPA is a novel attention mechanism that employs tensor factoriza-
tions for queries (Q), keys (K), and values (V). By dynamically factorizing activations rather than
static weights (as in LoRA), TPA constructs low-rank, contextual representations. This approach
substantially reduces KV cache memory usage while offering improved representational capacity.
In practice, TPA can decrease memory overhead by an order of magnitude compared to standard
Multi-Head Attention (MHA), alongside achieving lower pretraining validation loss (perplexity)
and better downstream performance.

A key advantage of TPA is its native compatibility with rotary positional embeddings (RoPE) [51],
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enabling a straightforward drop-in replacement for multi-head attention (MHA) layers in modern
LLM architectures such as LLaMA [57] and Gemma [55].

Our main contributions are summarized as follows:
1. We propose Tensor Product Attention (TPA), a mechanism that factorizes Q, K, and V ac-

tivations using contextual tensor decompositions. This achieves a substantial reduction in
inference-time KV cache size relative to standard attention mechanisms [59], MHA, MQA, GQA,
and MLA, while also improving performance. In addition, we analyze existing attention mecha-
nisms and reveal that MHA, MQA, and GQA can be expressed as non-contextual variants of
TPA.

2. We introduce the Tensor ProducT ATTenTion Transformer (T6), a new TPA-based model archi-
tecture for sequence modeling. In language modeling experiments, T6 consistently improves or
matches validation perplexity and downstream evaluation performance, all while maintaining a
reduced KV cache size.

3. We demonstrate that TPA integrates seamlessly with RoPE [51], facilitating its easy adoption in
popular foundation model architectures like LLaMA and Gemma.

4. We develop FlashTPA Decoding, an efficient autoregressive inference algorithm for TPA. Our
empirical results show that FlashTPA Decoding can be faster than optimized MHA, MQA, GQA,
and MLA decoding methods, particularly for long sequences.

2 Background

In this section, we briefly review Scaled Dot-Product Attention, Multi-Head Attention [59], and
introduce key notations. Other attention mechanisms like Multi-Query Attention (MQA) [45],
Grouped Query Attention (GQA) [2], Multi-head Latent Attention (MLA) [31, 32], and Rotary
Position Embedding (RoPE) [51] are further discussed in Appendix G.

Notations. We use bold uppercase letters (e.g., X, Q) for matrices, bold lowercase (e.g., a,
b) for vectors, and italic uppercase (e.g., WQ

i ) for learnable parameter matrices. We denote by
[n] the set {1, . . . , n} for some positive integer n. We use ⊤ to denote the transpose of a vector
or a matrix. Let dmodel be the embedding dimension, h the number of attention heads, dh the
dimension per head, xt ∈ Rd the input for the t-th token at a given attention layer, X ∈ RT×dmodel

denotes the input embeddings for T tokens, and Q, K, V ∈ RT×h×dh denote the queries, keys,
and values of h heads for T tokens. With a little abuse of notation, Qi, Ki, Vi ∈ RT×dh denote
the i-th head of queries, keys, and values, and Qt, Kt, Vt ∈ Rh×dh denote the heads of the query,
key, and value for t-th token. Throughout the paper, WQ,WK ,W V denote projection matrices
for queries, keys, and values, respectively. In multi-head attention, each head is associated with
its own set of WQ

i ,WK
i ,W V

i , and each has dimension WQ
i ,WK

i ,W V
i ∈ R dmodel×dk , where dk is

typically set to dh, the dimension of each head.5 Similarly, we have an output projection matrix
WO ∈ R(h·dh)×dmodel . For methods like MQA and GQA, some of these projection matrices are shared
or partially shared across heads, but their shapes remain consistent.

We define the tensor product of two vectors as follows: for vectors a ∈ Rm,b ∈ Rn, the tensor
product of a and b is: a ⊗ b = C ∈ Rm×n,with Cij = aibj , where ai is the i-th element of a, bj is
the j-th element of b, and Cij is the (i, j)-th entry of C. The vectorization of a matrix C ∈ Rm×n,

5Often, h× dh = dmodel, so each head has query/key/value dimension dh.

3



denoted vec(C) ∈ Rmn, stacks the columns of C into a single column vector. For example, if
C = [c1, c2, . . . , cn] where cj are columns, then vec(C) = [c⊤1 , c

⊤
2 , . . . , c

⊤
n ]

⊤.

2.1 Scaled Dot-Product Attention

Scaled dot-product attention [59] determines how to focus on different parts of an input sequence
by comparing queries (Q) and keys (K). It produces a weighted combination of the values (V).
Formally, the attention output is:

Attention(Q,K,V) = Softmax
(
QK⊤
√
dk

)
V,

where each of Q,K,V is an (n× dk) matrix for n tokens and key dimension dk.

2.2 Multi-Head Attention (MHA)

Multi-Head Attention (MHA) [59] extends scaled dot-product attention by dividing the model’s
internal representation into several heads. Each head learns different projections for queries,
keys, and values, allowing the model to attend to different types of information from different
representational subspaces. For each token embedding xt ∈ Rdmodel , MHA computes each head i as
follows:

Qt,i = (WQ
i )⊤ xt ∈ Rdh , Kt,i = (WK

i )⊤ xt ∈ Rdh , Vt,i = (W V
i )⊤ xt ∈ Rdh ,

headi = Attention
(
Qi,Ki,Vi

)
,

where WQ
i ,WK

i ,W V
i ∈ Rdmodel×dh are learnable projection matrices for the i-th head, and Qi,Ki,Vi ∈

RT×dh are the query, key, and value matrices for the i-th head over T tokens. After computing
each head’s attention output, the results are concatenated and mapped back to the model’s original
dimension via another learnable linear projection matrix WO ∈ Rhdh×dmodel :

MHA(X) = Concat
(
head1, . . . ,headh

)
WO.

MHA enables the model to capture a rich set of dependencies by allowing each head to focus on
different aspects of the input sequence. We also discuss how MHA, MQA and GQA relates to TPA
in Section. Further discussion on Transformers and attention mechanisms, KV cache optimization
techniques, and low-rank factorization methods is available in Appendix F.

3 Tensor Product Attention

In this section, we provide a detailed description of our proposed Tensor Product Attention (TPA),
which enables contextual low-rank factorization for queries, keys, and values. First, we explain how
TPA factorizes these components, specifying tensor shapes. Next, we describe TPA’s integration into
the multi-head attention framework and its benefits for reducing KV cache memory consumption
during inference. Finally, we demonstrate RoPE’s seamless integration with TPA, including a
pre-rotated variant for efficiency.
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3.1 Tensor Factorization of Queries, Keys, and Values

Let xt ∈ Rdmodel for t = 1, . . . , T be the hidden-state vector corresponding to the t-th token in a
sequence of length T . A typical multi-head attention block has h heads, each of dimension dh,
satisfying dmodel = h × dh. Standard attention projects the entire sequence into three tensors,
Q, K, V ∈ RT×h×dh , where Qt,Kt,Vt ∈ Rh×dh denote the slices for the t-th token.
Contextual Factorization. Instead of forming each head’s query, key, or value via a single linear
map, TPA factorizes each Qt,Kt,Vt into a sum of (contextual) tensor products whose ranks are
Rq, Rk, and Rv, respectively and may differ. Specifically, for each token t, with a small abuse of
notation, we define:

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ bQ
r (xt), Kt =

1

RK

RK∑
r=1

aKr (xt) ⊗ bK
r (xt),

Vt =
1

RV

RV∑
r=1

aVr (xt) ⊗ bV
r (xt), (3.1)

where aQr (xt),a
K
r (xt),a

V
r (xt) ∈ Rh, bQ

r (xt),b
K
r (xt),b

V
r (xt) ∈ Rdh . Hence, for queries, each tensor

product aQr (xt) ⊗ bQ
r (xt) : Rh × Rdh → Rh×dh (an outer product) contributes to the query slice

Qt ∈ Rh×dh . Analogous definitions apply to the key slice Kt and value slice Vt.
Latent Factor Maps. Each factor in the tensor product depends on the token’s hidden state xt. For
example, for queries, we can write:

aQr (xt) = W aQ

r xt ∈ Rh, bQ
r (xt) = W bQ

r xt ∈ Rdh ,

where W aQ
r ∈ Rh×dmodel and W bQ

r ∈ Rdh×dmodel are learnable weight matrices. Similar linear maps
produce the factors for keys and values.

One often merges the rank index into a single output dimension. For instance, for queries:

aQ(xt) = W aQ xt ∈ RRq ·h, bQ(xt) = W bQ xt ∈ RRq ·dh ,

which are then reshaped into AQ(xt) ∈ RRQ×h and BQ(xt) ∈ RRQ×dh (where each row of AQ(xt)

corresponds to an aQr (xt)
⊤ and each row of BQ(xt) to a bQ

r (xt)
⊤). The query tensor for token t can

then be expressed as:

Qt =
1

RQ
AQ(xt)

⊤BQ(xt) ∈ Rh×dh .

This operation is equivalent to Qt =
1

RQ

∑RQ

r=1 a
Q
r (xt)(b

Q
r (xt))

⊤, where aQr is the r-th column of

AQ(xt)
⊤ and (bQ

r )⊤ is the r-th row of BQ(xt). Repeating for all tokens reconstitutes Q ∈ RT×h×dh .
Similar procedures are applied to obtain K and V with ranks RK and RV , respectively.
Scaled Dot-Product Attention. Once Q,K,V are factorized, multi-head attention proceeds as in
standard Transformers. For each head i ∈ {1, . . . , h}:

headi = Softmax
(

1√
dh

Qi (Ki)
⊤
)
Vi, (3.2)
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where Qi,Ki,Vi ∈ RT×dh are the slices along the head dimension. Concatenating these h heads
along the last dimension yields an RT×(h·dh) tensor, which is projected back to RT×dmodel by an
output weight matrix WO ∈ R(h·dh)×dmodel :

TPA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO. (3.3)

Parameter Initialization. We use Xavier initialization [14] for the factor weight matrices; details are
in Appendix H.

3.2 RoPE Compatibility and Acceleration

In a typical workflow of adding RoPE to standard multi-head attention, one first computes Qt,Ks ∈
Rh×dh of the t-th token and s-th token and then applies:

Qt 7→ Q̃t = RoPEt(Qt), Ks 7→ K̃s = RoPEs(Ks). (3.4)

Direct Integration. A useful optimization is to integrate RoPE directly into the TPA factorization.
For example, one can pre-rotate the token-dimension factors:

B̃K(xt) ←− RoPEt

(
BK(xt)

)
, (3.5)

yielding a pre-rotated key representation:

K̃t =
1

RK

RK∑
r=1

aK(r)(xt)⊗ RoPEt

(
bK
(r)(xt)

)
=

1

RK
AK(xt)

⊤RoPEt

(
BK(xt)

)
.

Here, RoPEt is applied to each row of BK(xt) (i.e., to each bK
(r)(xt) vector). Thus, each Kt is

effectively rotated before caching. This removes the need for explicit rotation at decoding time,
accelerating autoregressive inference. Depending on hardware and performance requirements,
different RoPE integration strategies can be adopted for training and inference.

Theorem 3.1 (RoPE’s Compatibility with TPA). Let Qt be factorized by TPA as

Qt =
1

RQ
AQ(xt)

⊤BQ(xt) ∈ Rh×dh ,

where AQ(xt) ∈ RRQ×h and BQ(xt) ∈ RRQ×dh . Then we have:

RoPE(Qt) =
1

RQ
AQ(xt)

⊤ B̃Q(xt), (3.6)

where B̃Q(xt) = RoPEt

(
BQ(xt)

)
(RoPE applied row-wise to BQ(xt)). Furthermore, let Qt and

Ks be factorized by TPA. Let Q̃t = RoPEt(Qt) and K̃s = RoPEs(Ks) be their RoPE-transformed
versions. The relative positional encoding property of RoPE is preserved:

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

where RoPEt−s denotes applying RoPE with relative position t− s. Focusing on individual heads
i, if qt,i and ks,i are the i-th head vectors from Qt and Ks respectively (as column vectors of
dimension dh), and q̃t,i = RoPE(qt,i, t) and k̃s,i = RoPE(ks,i, s), then the dot product for attention
scores satisfies:

q̃⊤
t,i k̃s,i = q⊤

t,iRoPE(·, t− s)ks,i.
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Theorem 3.1 indicates that TPA does not break RoPE’s relative translational property. We
prove Theorem 3.1 in Appendix E.1. In essence, RoPEt applies a linear transformation (rotation
matrix Rt) to the dh-dimensional space. Since Qt = 1

RQ
AQ(xt)

⊤BQ(xt), applying RoPE yields

QtRt =
1

RQ
AQ(xt)

⊤(BQ(xt)Rt). Thus, RoPE effectively transforms BQ(xt) to B̃Q(xt) = BQ(xt)Rt,
where Rt acts on each row of BQ(xt). The AQ(xt) factor remains unchanged, preserving the TPA
structure.

3.3 KV Caching and Memory Reduction

In autoregressive decoding, standard attention caches Kt,Vt ∈ Rh×dh for each past token t. This
accumulates to RT×h×dh for keys and RT×h×dh for values, i.e., 2T h dh total.
TPA Factorized KV Caching. Instead of storing the full Kt and Vt, TPA stores only their factor
components. Specifically, for each past token t, we cache:

AK(xt), B̃K(xt) and AV (xt), BV (xt),

where AK(xt) ∈ RRK×h, B̃K(xt) ∈ RRK×dh(pre-rotated), AV (xt) ∈ RRV ×h, BV (xt) ∈ RRV ×dh .
Hence, the memory cost per token is RK(h+ dh)︸ ︷︷ ︸

for K

+ RV (h+ dh)︸ ︷︷ ︸
for V

= (RK + RV )
(
h + dh

)
.

Compared to the standard caching cost of 2h dh, the ratio is (RK+RV ) (h+dh)
2h dh

. For large h and dh
(typically dh = 64 or 128), setting RK , RV ≪ h (e.g., rank 1 or 2) often yields substantial reduction
of KV cache size. Table 1 provides a comparative overview of different attention mechanisms,
including TPA and its variants, focusing on KV cache size per token and the number of parameters
in an attention layer.

Table 1: Comparison of different attention mechanisms. Here, RQ, RK , and RV denote the ranks
for queries, keys, and values in TPA, respectively. Variants of TPA, such as TPA (KVonly), TPA
(Non-contextual A), and TPA (Non-contextual B), are detailed in Appendix H. For MLA, dRh and
dh are the dimensions for RoPE and non-RoPE parts; d′c and dc are the dimensions of compressed
vectors for query and key-value, respectively.

METHOD KV CACHE # PARAMETERS # QUERY HEADS # KV HEADS

MHA 2hdh 4d2model h h
MQA 2dh (2 + 2/h)d2model h 1
GQA 2gdh (2 + 2g/h)d2model h g

MLA dc + dRh
d′c(dmodel + hdh + hdRh )

+dmodel(d
R
h + hdh) + dc(dmodel + 2hdh) h h

TPA (RK +RV )(h+ dh) dmodel(RQ +RK +RV )(h+ dh) + dmodel hdh h h
TPA (KVonly) (RK +RV )(h+ dh) dmodel(RK +RV )(h+ dh) + 2dmodel hdh h h

TPA (Non-contextual A) (RK +RV )dh (RQ +RK +RV )(dmodeldh + h) + dmodel hdh h h
TPA (Non-contextual B) (RK +RV )h (RQ +RK +RV )(dmodelh+ dh) + dmodel hdh h h

3.4 Model Architectures

We propose a new architecture called Tensor ProducT ATTenTion Transformer (T6), which uses
our Tensor Product Attention (TPA) in place of standard MHA (multi-head attention) or GQA
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(grouped-query attention). Building upon the query, key, and value tensors Q,K,V ∈ RT×h×dh

defined in Section 3.1, T6 utilize the overall architecture of LLaMA [57] while changing the self-
attention block to our TPA-based version. The feed-forward network (FFN) adopts a SwiGLU layer,
as in [46, 57].

The specific mechanisms for TPA-based query, key, and value factorization, as well as the atten-
tion computation within T6, directly follow the comprehensive descriptions provided in Section 3
(particularly Section 3.1 for factorization, and Equations 3.2 and 3.3 for attention computation). A
brief recap of these steps within the T6 model context is provided in Appendix A.
Rotary Positional Embedding (RoPE). As discussed in Section 3.2, RoPE [51] is applied to the Q

and K. Within TPA, we pre-rotate the factor bQ
t (xt) and bK

s (xs) directly, so that each Ks is already
rotated prior to caching, see (3.5) and Theorem 3.1.
SwiGLU Feed-Forward Network. Following [46, 57], our T6 uses a SwiGLU-based Feed-Forward
Network (FFN): FFN(x) =

[
σ(xW1) ⊙ (xW2)

]
W3, where σ is the SiLU (a.k.a., swish) nonlinearity,

⊙ is element-wise product, and W1,W2,W3 are learnable parameters. Note that other activation
functions can also be used.
Overall T6 Block Structure. Putting everything together, one T6 block consists of:

x ← x+TPA
(
RMSNorm(x)

)
,

x ← x+ SwiGLU-FFN
(
RMSNorm(x)

)
.

We place norm layers (e.g., RMSNorm) before each sub-layer. Stacking L such blocks yields a T6
model architecture with L layers.

4 Expressing MHA, MQA, GQA as Non-contextual TPA

We demonstrate that standard Multi-Head Attention (MHA), Multi-Query Attention (MQA), and
Grouped-Query Attention (GQA) can be expressed as special, non-contextual variants of Tensor
Product Attention (TPA). This is achieved by imposing specific constraints on the TPA factors,
particularly by making the head-dimension factors (a) independent of the input token (xt).

4.1 MHA as Non-contextual TPA

Standard Multi-Head Attention (MHA) can be precisely formulated as a TPA where the rank is
equal to the number of heads (RQ = RK = RV = h), and the head-dimension factors are fixed,
non-contextual basis vectors.

Recall the TPA formulation for the query tensor of a single token xt:

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ bQ
r (xt)

To recover MHA, we set the rank RQ = h and define the factors for each head i ∈ [h] as follows:
• Contextual token factor: This is the standard linear projection for the i-th head’s query:

bQ
i (xt) = (WQ

i )⊤xt ∈ Rdh
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• Non-contextual head factor: This factor is a scaled standard basis vector, independent of xt:

aQi = h · ei ∈ Rh

where ei is the i-th standard basis vector (a vector of zeros with a one at the i-th position).
Substituting these into the TPA equation, the 1/RQ = 1/h scaling factor cancels with the scaling

of the aQi factor:

Qt =
1

h

h∑
i=1

(h · ei)⊗
(
(WQ

i )⊤xt

)
=

h∑
i=1

ei ⊗
(
(WQ

i )⊤xt

)
The resulting tensor product, ei ⊗ bQ

i (xt), produces an h × dh matrix where only the i-th row is
non-zero and contains the vector (bQ

i (xt))
⊤. Summing these matrices for i = 1, . . . , h assembles

the complete query tensor Qt, where the i-th row is precisely the query vector for the i-th head in
standard MHA. An analogous construction applies to the key (Kt) and value (Vt) tensors.

Thus, MHA is equivalent to a non-contextual TPA where the head-dimension factors are fixed
and orthogonal, effectively assigning a dedicated rank component to each attention head.

4.2 MQA and GQA as Non-contextual TPA

Similarly, Multi-Query Attention (MQA) and Grouped-Query Attention (GQA) can be seen as
non-contextual TPAs where the key and value tensors are formed with a rank lower than the
number of heads.
• MQA as Rank-1 TPA (for K and V). In MQA, all h query heads share a single key and value.

This corresponds to a TPA with ranks RK = 1 and RV = 1. The key tensor Kt is formed using
a single, non-contextual head-dimension factor aK = 1h (a vector of all ones) and a single
contextual token-dimension factor bK(xt) = (WK)⊤xt:

Kt =
1

1

(
1h ⊗ bK(xt)

)
This creates an h × dh matrix where every row is the same shared key vector (bK(xt))

⊤. The
same logic applies to the value tensor Vt. The queries remain full-rank (RQ = h) as in MHA.

• GQA as Rank-G TPA (for K and V). GQA is an intermediate approach where h heads are
divided into G groups, with heads in the same group sharing a key and value. This is equivalent
to a TPA with ranks RK = G and RV = G. The key tensor is formed by summing G components:

Kt =
1

G

G∑
j=1

aKj ⊗ bK
j (xt)

Here, bK
j (xt) is the shared key vector for group j. The non-contextual factor aKj is a scaled mask

vector, defined as aKj = G ·maskj , where the maskj vector has ones for heads belonging to group
j and zeros elsewhere. This scaling cancels the 1/G pre-factor:

Kt =
1

G

G∑
j=1

(G ·maskj)⊗ bK
j (xt) =

G∑
j=1

maskj ⊗ bK
j (xt)
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For example, with h = 8 heads and G = 2 groups (2 KV heads), the factor for the first group of 4
heads would be aK1 = 2 · [1, 1, 1, 1, 0, 0, 0, 0]⊤. This construction correctly assembles the final key
tensor by broadcasting each group’s shared key to its designated heads without any unintended
extra scaling.
This perspective highlights that MHA, MQA, and GQA are specific instances of a more general

TPA framework, where expressiveness and parameter sharing are controlled by the rank and the
nature (contextual vs. non-contextual) of the tensor factors.

4.3 Connecting MLA with TPA

Multi-head Latent Attention (MLA) employs a hybrid low-rank strategy that connects to TPA.
It constructs keys and values from two parallel components: a RoPE-enabled part and a main,
compressed (NoPE) part.
The RoPE Component as Rank-1 TPA. The RoPE-enabled key in MLA, KR, uses a single key vector
shared across all heads, a mechanism identical to Multi-Query Attention (MQA). As established
in Section 4, MQA is equivalent to a rank-1 non-contextual TPA for keys (RK = 1). The head-
dimension factor aK is a non-contextual vector of ones (1h), and the token-dimension factor bK(xt)
is the shared, contextual key vector. Thus, this component of MLA is a direct instance of rank-1
TPA.
The NoPE Component as a Related Low-Rank Factorization. The main NoPE key, KC , is formed
by up-projecting a compressed latent vector cKV

t ∈ Rdc . The operation KC
t = reshape((cKV

t )⊤W UK)
can be written as a linear combination of fixed basis matrices:

KC
t =

dc∑
j=1

(cKV
t )j ·Aj

Here, each Aj = reshape(rowj(W
UK)) ∈ Rh×dh is a fixed basis matrix, and (cKV

t )j is a contex-
tual scalar. While sharing the principle of low-rank contextual factorization, this structure differs
from TPA’s vector tensor product (a ⊗ b). MLA isolates context into scalar coefficients for fixed
matrices, whereas TPA distributes context across two vector factors.

In essence, MLA’s final key is a concatenation of outputs from two parallel low-rank structures:
a rank-1 TPA to handle RoPE, and a different factorization for its main representation.

5 FlashTPA Decoding Algorithm

For efficient autoregressive inference with Tensor Product Attention (TPA), we introduce FlashTPA
Decoding. This algorithm is optimized for generating one token at a time by leveraging the
factorized representation of queries, keys, and values. The core idea, illustrated in Figure 2, is to
perform attention computations using a sequence of Einstein summations (“einsum”) that operate
directly on these factorized components. This avoids materializing the full query, key, and value
tensors, which is particularly beneficial as the Key-Value (KV) cache grows with sequence length.

The detailed definitions of the input factorized components and the step-by-step pseudocode
for FlashTPA Decoding are provided in Algorithm 1 (see Appendix C for details). An optimized
Triton kernel implementation: Algorithm 3 is also outlined in Appendix C.
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D

S(1)

(M,RQ)
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(H,RQ)

∑
RQ

S(2)

(M,H)

aK
cache

(M,H)

⊙ L
(H,M)

Softmax
α

(H,M)

aV
cache

(M,H)

⊙ O(A)

(M,H)

bVcache
(M,E)

∑
M

O
(H,E)

Figure 2: Data flow diagram for FlashTPA Decoding. Rectangles represent tensors (blue for inputs,
yellow for intermediates, red for final output), circles with

∑
or ⊙ denote Einstein summation

contractions or element-wise products respectively, and the green rounded rectangle is the softmax
operation. Shapes are shown for a single query (N = 1) interacting with M cached items. H is
the number of heads, RQ is the query rank, and D,E are respective feature dimensions for the
BQ/b

K
cache and bVcache factors. Scaling factors in softmax are omitted for visual clarity.

This sequence of factorized operations allows FlashTPA Decoding to compute the attention
output efficiently. It minimizes memory allocations for large intermediate tensors and reduces the
overall computational load compared to materializing full query, key, and value tensors, especially
for long sequences. Consequently, TPA is not only memory-efficient due to its smaller KV cache
footprint but can also be computationally efficient during inference. The experimental results for
FlashTPA decoding time are presented in Section 6.2.
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Algorithm 1 FlashTPA Decoding Algorithm
Require: AQ: Query A tensor (B, 1, H,RQ)
Require: BQ: Query B tensor (B, 1, RQ, D)
Require: aKcache: Cached Key A tensor (B, T,H)
Require: bKcache: Cached Key B tensor (B, T,D)
Require: aVcache: Cached Value A tensor (B, T,H)
Require: bVcache: Cached Value B tensor (B, T,E)

Require: stotal, sQ, sK , sV : Scaling factors (with defaults stotal ← 1/
√
D, sQ ← 1/RQ)

Ensure: O: Output tensor (B, 1, H,E)
1: ▷ Step 1: Interaction between BQ and bKcache components
2: S(1) ← einsum(“bnrd, bmd→ bnmr”,BQ, b

K
cache) ▷ Shape: (B, 1, T,RQ).

S
(1)
b,n,m,r =

∑
d(BQ)b,n,r,d · (bKcache)b,m,d

3: ▷ Step 2: Incorporate AQ component
4: S(2) ← einsum(“bnhr, bnmr→ bnmh”,AQ, S

(1)) ▷ Shape: (B, 1, T,H).
S
(2)
b,n,m,h =

∑
r(AQ)b,n,h,r · S

(1)
b,n,m,r

5: ▷ Step 3: Incorporate aKcache component to get full logits
6: L ← einsum(“bnmh, bmh→ bhnm”, S(2),aKcache) ▷ Shape: (B,H, 1, T ).
Lb,h,n,m = S

(2)
b,n,m,h · (a

K
cache)b,m,h

7: ▷ Step 4: Apply scaling and Softmax
8: α← SoftmaxM (L · sQ · sK · stotal) ▷ Shape: (B,H, 1, T ). Softmax over cache dimension M
9: ▷ Step 5: Compute weighted sum with aVcache component

10: O(A) ← einsum(“bhnm, bmh→ bnmh”,α,aVcache) ▷ Shape: (B, 1, T,H).
O

(A)
b,n,m,h = αb,h,n,m · (aVcache)b,m,h

11: ▷ Step 6: Incorporate bVcache component and final scaling
12: O← einsum(“bnmh, bme→ bnhe”,O(A), bVcache) · sV ▷ Shape: (B, 1, T, E). Final output
13: return O

6 Experiments

6.1 Language Modeling Tasks

All experiments reported in this paper are implemented on the nanoGPT code base [23], using the
FineWeb-Edu 100B dataset [36]. The dataset contains 100 billion tokens for training and 0.1 billion
tokens for validation. We compare T6 against the baseline Llama architecture [57] with SwiGLU
activation [46] and RoPE embeddings [51], as well as Llama variants that replace Multi-Head
Attention (MHA; [59]) with Multi-Query Attention (MQA; [45]), Grouped Query Attention (GQA;
[2]), or Multi-head Latent Attention (MLA; [31]). In our experiments, the number of heads h is
adjusted for each attention mechanism to ensure that all attention mechanisms have the same
number of parameters as the standard Multi-Head Attention (MHA), which has 4d2model parameters
per attention layer. We train models at four scales: small (124M parameters), medium (353M), large
(773M), and XL (1.5B). Details on architecture hyperparameters and training hardware are shown
in Appendix I.1.
Training & Validation Curves. Figure 4 compares validation loss curves for the medium (353M),
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large (773M), and XL (1.5B) models on FineWeb-Edu-100B. Training loss curves are provided in
Appendix Figure 3. Overall, TPA (red curves) and its simpler variant TPA-KVonly (pink curves)
(see Appendix H) converge as fast as or faster than the baselines (MHA, MQA, GQA, MLA) while
also achieving visibly lower final validation losses. For instance, in Figure 4(b), TPA and TPA-
KVonly remain below the MHA baseline in terms of validation loss at nearly all training stages.
Meanwhile, Multi-Head Latent Attention (MLA) [31] (blue curves) generally trains more slowly
and yields higher validation losses.
Validation Perplexity. Figure 9 (in the Appendix) shows the validation perplexities of the medium-
and large-scale models. Mirroring the loss curves, TPA and TPA-KVonly steadily outperform MHA,
MQA, GQA, and MLA over the course of training. By the end of pretraining (around 49B tokens),
TPA-based approaches achieve the lowest perplexities in most configurations.
Downstream Evaluation. We evaluate zero-shot and two-shot performance on standard bench-
marks, including ARC [62], BoolQ [12], HellaSwag [63], OBQA [38], PIQA [3], WinoGrande [42],
and MMLU [17], using the lm-evaluation-harness codebase [13]. For ARC-E, ARC-C, Hel-
laSwag, OBQA, PIQA, and SciQ, we report accuracy norm; for other tasks, we report standard
accuracy. Due to the page limitation, we only display the zero-shot evaluation results of medium
and large models here in Tables 2 and 3. Zero-shot evaluation of small and XL models are dis-
played in Tables 12 and 13 in the appendix. Moreover, we also present 2-shot evaluation results in
Tables 14, 15, 16 and 17 in the appendix.

For the medium-size (353M) models (Table 2 for 0-shot and Table 15 in appendix for 2-shot), TPA
generally ties or outperforms all competing methods, achieving, for example, an average of 51.41%
in zero-shot mode versus MHA’s 50.11%, MQA’s 50.44%, and MLA’s 50.13%. When given two-shot
prompts, TPA again leads with 53.12% average accuracy. A similar trend appears for the large-size
(773M) models (Table 3), where TPA-KVonly attains the highest average (53.52% zero-shot). For
the XL size models (1.5B) (Table 13 in the appendix), TPA-KV only achieves the highest average
(55.03% zero-shot).
Our experiments confirm that TPA consistently matches or exceeds the performance of established
attention mechanisms (MHA, MQA, GQA, MLA) across medium and large model scales.

(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)

Figure 3: The training loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B)
models, with different attention mechanisms on the FineWeb-Edu 100B dataset.
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(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)

Figure 4: The validation loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B)
models, with different attention mechanisms on the FineWeb-Edu 100B dataset.

Table 2: The evaluation results of medium models with different attention mechanisms pre-trained
using FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.51 29.52 59.60 45.68 34.20 68.82 53.43 23.33 76.90 50.11
MQA 57.62 31.91 59.45 45.69 35.40 69.31 53.51 26.47 74.60 50.44
GQA 58.67 31.48 58.29 45.45 35.20 68.50 54.46 24.58 76.50 50.35
MLA 56.65 29.52 57.83 46.05 34.60 69.42 52.80 24.62 79.70 50.13

TPA-KVonly 58.01 30.12 58.01 45.95 35.60 69.10 53.12 25.39 75.10 50.04
TPA 58.38 31.57 59.39 46.83 37.00 70.02 54.06 25.52 79.90 51.41

Table 3: The evaluation results of large models with different attention mechanisms pre-trained
using the FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.93 33.62 61.93 50.63 36.00 71.06 55.41 22.87 81.20 52.52
MQA 60.73 33.62 57.34 50.09 37.00 69.97 55.49 25.30 79.60 52.13
GQA 61.66 34.30 58.72 49.85 38.40 71.16 53.75 25.23 77.60 52.30
MLA 63.55 32.85 60.95 51.72 38.80 70.51 55.01 24.55 81.90 53.32

TPA-KVonly 63.26 34.13 61.96 50.66 37.20 72.09 55.25 26.06 81.10 53.52
TPA 63.22 35.58 60.03 51.26 36.80 71.44 55.56 24.77 79.60 53.10

6.2 Experimental Results on FlashTPA Decoding

This section presents an evaluation of FlashTPA’s decoding time in comparison to several other
optimized attention mechanisms. We benchmark FlashTPA against FlashMHA [44], FlashGQA,
FlashMQA, and FlashMLA [22]. It is important to note that our current FlashTPA implementation
utilizes Triton [56]. While the compared methods are typically available as highly optimized
CUDA kernels, these experiments provide initial insights into FlashTPA’s potential. Develop-
ment of a CUDA-based FlashTPA kernel is ongoing and is expected to yield further performance
improvements.

The evaluations were performed with batch sizes selected from {1, 2, 4, 8, 16}, model embedding
dimensions (dmodel) chosen from {1024, 2048, 3072}, and sequence lengths ranging from 212 (4,096)
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Figure 5: Decoding time comparison of different attention mechanisms with an embedding dimen-
sion of 2048 and dh = 64. The y-axis represents log2(time) in seconds, and the x-axis represents
log2(sequence length). Each subfigure corresponds to a different batch size.

to 219 (524,288). For all experiments, the dimension per head (dh) was fixed at 64. The ranks for
TPA’s factorized components (RQ, RK , RV ) were set to (16, 1, 1), and for GQA configurations, the
number of key-value head groups was 4.

The decoding time per token, measured as log2(time) in seconds, is plotted against
log2(sequence length). Lower values on the y-axis indicate faster decoding times. Results are
presented in Figure 5 for an embedding dimension of 2048 (corresponding to 32 attention heads).
Additional results for embedding dimensions of 1024 (16 heads, Figure 8) and 3072 (48 heads,
Figure 7) are provided in Appendix C. Figure 5 depicts these speed comparisons for an embedding
dimension of 2048. The results indicate that FlashTPA (blue line) is highly competitive and often
outperforms other attention mechanisms, especially as the sequence length increases. A detailed
breakdown of these comparisons across different batch sizes for the dmodel = 2048 case (Figure 5) is
provided in Appendix C.

These findings underscore the computational efficiency of the FlashTPA decoding algorithm,
particularly its favorable scaling with increasing sequence lengths.

7 Conclusion

We introduced Tensor Product Attention (TPA), which factorizes query, key, and value matrices
into rank-R tensor products dependent on the token’s hidden state. Storing only the factorized
key/value components during autoregressive decoding substantially decreases the KV memory size
with improved performance compared with MHA, MQA, GQA, and MLA. The approach is fully
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compatible with RoPE (and can store pre-rotated keys). Variants of TPA include factorizing only
the key/value or sharing basis vectors across tokens. Overall, TPA offers a powerful mechanism
for compressing KV storage while improving the model performance, thereby enabling longer
sequence contexts under constrained memory.
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A T6 Model Architecture Details

This section provides a recap of how Tensor Product Attention (TPA) components are integrated
within the Tensor ProducT ATTenTion Transformer (T6) architecture, building upon the detailed
exposition in Section 3.
TPA QKV Factorization Recap. As defined in Section 3.1, for each token’s hidden-state vector
xt ∈ Rdmodel , TPA projects the input into three tensors Q,K,V ∈ RT×h×dh . The slices for the
t-th token, Qt, Kt, Vt ∈ Rh×dh , are formed by sums of tensor products. The factor components
aQr (xt),b

Q
r (xt),a

K
r (xt),b

K
r (xt),a

V
r (xt),b

V
r (xt) are produced by linear transformations on xt. For

instance, for queries, with learnable weight matrices W aQ
r ∈ Rh×dmodel and W bQ

r ∈ Rdh×dmodel , these
factors are:

aQr (xt) = W aQ

r xt, bQ
r (xt) = W bQ

r xt.

In practice, these are often computed by merging ranks into a single linear layer followed by
reshaping, as detailed in Section 3.1. The factorization for keys (Kt) and values (Vt) follows the
same pattern using their respective ranks RK , RV and projection matrices.
Attention Step and Output Projection Recap. Once the factorized Q,K,V tensors are obtained
for all tokens (with RoPE applied to the appropriate factors of Q and K as per Section 3.2), the
attention output for each head i ∈ {1, . . . , h} is computed using the scaled dot-product attention
formula (Equation (3.2) from the main paper):

headi = Softmax
(

1√
dh

Qi (Ki)
⊤
)
Vi.

Finally, the outputs from all h heads are concatenated and projected back to the model dimension
using an output weight matrix WO, as shown in Equation (3.3) from the main paper:

TPA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO.

This constitutes the output of the TPA sub-layer in a T6 block.

B Toward Faster Computation Without Materializing Q, K and V

In TPA, the query, key, and value tensors (Qt,Kt,Vt) are constructed as sums of RQ, RK , RV

rank-one tensors, respectively, as detailed in Equation (3.1). These sums are typically normalized by
scaling factors sQ = 1/RQ, sK = 1/RK , and sV = 1/RV . This section explores the computational
advantages of performing attention calculations directly on these factorized representations, includ-
ing their scaling factors, without explicitly materializing the full Q,K,V tensors. This approach
can potentially reduce floating-point operations (FLOPs) and memory bandwidth.

B.1 Single-Head Factorization Setup Without Materializing Q and K

Consider a single head i. Each query vector Q
(i)
t ∈ Rdh is factorized (with rank RQ and scale

sQ = 1/RQ):

Q
(i)
t = sQ

RQ∑
r=1

a
(r)
q,i (xt)b

(r)
q (xt),
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and each key vector K(i)
τ ∈ Rdh is factorized (with rank RK and scale sK = 1/RK):

K(i)
τ = sK

RK∑
s=1

a
(s)
k,i(xτ )b

(s)
k (xτ ).

Their dot-product for tokens t, τ is

[
Q(i) (K(i))⊤

]
t,τ

= sQsK

RQ∑
r=1

RK∑
s=1

a
(r)
q,i (xt) a

(s)
k,i(xτ )

〈
b(r)
q (xt),b

(s)
k (xτ )

〉
. (B.1)

Similarly, the value vector V(i)
τ ∈ Rdh is factorized (with rank RV and scale sV = 1/RV ):

V(i)
τ = sV

RV∑
u=1

a
(u)
v,i (xτ )b

(u)
v (xτ ).

B.2 Multi-Head Case

For multi-head attention with h heads, one repeats the factorization across all heads. The b(r)
q ,b

(s)
k ,b

(u)
v

vectors are shared across heads. The scaling factors sQ, sK , sV are applied per head as part of the
definition.

B.3 Complexity Analysis

We compare the cost of standard multi-head attention versus TPA under two scenarios:
1. Naïve: Materialize Q,K,V from factors (including their scales), then perform the usual batched

GEMM.
2. Specialized: Attempt to compute QK⊤ and the final attention output directly from the rank-

(RQ, RK , RV ) factors and their scales, without explicitly forming full Q,K,V.

Standard Multi-Head Attention. For batch size B and sequence length T :
• Projection cost: For Q, K, and V, the total cost to project the input sequence X ∈ RB×T×dmodel to

Q,K,V ∈ RB×T×H×dh is Θ(BTdmodelHdh).
• Dot-product: The attention score computation QK⊤ involves a batched matrix multiplication of

shapes (B ·H,T, dh) and (B ·H, dh, T ), which costs Θ(BHT 2dh).
For large T , the Θ(BHT 2dh) term dominates.

TPA: Naïve Implementation.
• Constructing factors: Θ

(
BTdmodel(RQ(H + dh) +RK(H + dh) +RV (H + dh))

)
.

• Materializing Q,K,V (including scaling): Θ
(
BTHdh(RQ+RK+RV )

)
. The scaling is a per-element

multiplication.
• Dot-product Q (K)⊤ and multiply by V: Θ(BHT 2dh) for scores, and Θ(BHT 2dh) for value aggre-

gation.
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Typically RQ, RK , RV ≪ H, dh, so the overhead of constructing factors and materializing is in-
fluenced by these ranks. The key benefit of TPA is in reducing KV cache size and potentially
computation if specialized kernels are used.

TPA: Specialized Implementation. If we bypass explicitly forming Q,K,V, the computation
involves the sums over ranks and the scaling factors. Below, we detail its complexity.

Algorithm 2 Specialized TPA Computation (Without Materializing Q,K,V)
Require: Factorized Query components: AQ(T,H,RQ), BQ(T,RQ, dh)
Require: Factorized Key components: AK(T,H,RK), BK(T,RK , dh)
Require: Factorized Value components: AV (T,H,RV ), BV (T,RV , dv) (Note: dv is value head dim,

often dv = dh)
Require: Sequence length T , Number of heads H , Ranks RQ, RK , RV , Head feature dimension dh
Require: Scaling factors: sQ = 1/RQ, sK = 1/RK , sV = 1/RV (or other pre-defined scales)
Ensure: Output tensor O(T,H, dv)

// Phase 1: Attention Score Computation
1: ▷ Step 1.1: Compute shared B-factor dot products P
2: P ← einsum("tqrd, tkrd→ tqtkrqrk",BQ,BK)

▷ Indices: tq=query token, tk=key token, rq=query rank, rk=key rank, d=feature dim
3: ▷ Step 1.2: Combine P with AQ,AK and apply sQ, sK to form scaled logits L′
4: Lunscaled ← einsum("tqhrq, tkhrk, tqtkrqrk→ tqtkh",AQ,AK , P )
5: L′ ← sQ · sK · Lunscaled

▷ Indices: h=head
6: ▷ Step 1.3: Apply attention scaling (1/

√
dh) and Softmax to get probabilities α

7: L′′scaled ← L
′/
√
dh

8: α← SoftmaxTk
(L′′scaled) ▷ Softmax over key tokens Tk for each query Tq and head H

▷ Output α(tq, tk, h)

// Phase 2: Value Aggregation
9: ▷ Step 2.1: Conceptually weight AV by α to form WAV

10: WAV
← einsum("tqtkh, tkhrv→ tqtkhrv",α,AV )

▷ Indices: rv=value rank
11: ▷ Step 2.2: Aggregate WAV

with BV and apply sV to get final output O
12: Ounscaled ← einsum("tqtkhrv, tkrvd→ tqhd",WAV

,BV ) ▷ d is value feature dim dv
13: O← sV ·Ounscaled
14: return O

B.4 Complexity Analysis for the Specialized Implementation

Complexity for a Single Query Token (Autoregressive Decoding). The dot product Q(i)
t ·K

(i)
τ

from Eq. (B.1) includes the sQsK scaling. For each pair (r, s), we pay:

1. Θ(1) for multiplying a
(r)
q,i (xt) a

(s)
k,i(xτ ),

2. Θ(dh) for the dot product ⟨b(r)
q (xt),b

(s)
k (xτ )⟩.
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The sQsK scaling is a single multiplication after the sums. Since (r, s) runs over RQ × RK , each
token-pair (t, τ) costs Θ(RQRKdh).

Multi-Head and Batches (Full Sequence Processing - reusing b-Dot Products as in Algorithm 2).
The b-vectors can be shared across heads. Let T be the sequence length.
1. b-Dot-Product Stage (P ):

Compute P (tq, τk, rq, rk) = ⟨b
(rq)
q (xtq),b

(rk)
k (xτk)⟩. Cost: Θ(T 2RQRKdh). This is shared across

heads.
2. Per-Head Score Computation:

For each head h, compute Ltq ,τk,h = sQsK
∑

rq ,rk
a
(rq)
q,h (xtq) a

(rk)
k,h (xτk)P (tq, τk, rq, rk).

Cost: Θ(HT 2RQRK).
Putting these together for batch size B, the total cost for scores is
Θ(BT 2RQRKdh) + Θ(BHT 2RQRK) = Θ(BT 2RQRK(dh +H)). This is for computing the scaled
logits before softmax. The standard attention dot-product step is Θ(BHT 2dh). For the specialized
TPA to reduce flops in score computation: RQRK (dh +H) < H dh. This implies RQRK < H/(1 +
H/dh). If H ≈ dh, then RQRK ≈ H/2.

B.5 Toward Faster Computation Without Materializing Q, K, V

We extend the idea to also avoid explicitly forming V. After obtaining scaled logits L′tq ,τk =

sQsK(QtqK
⊤
τk
) (per head), we apply αtq ,τk = softmaxτk

(
1√
dh
L′tq ,τk

)
. The final attention output at

token tq (single head) using Vτk = sV
∑RV

u=1 a
(u)
v (xτk)b

f
v (u)(xτk) is:

head(tq) =

T∑
τk=1

αtq ,τk Vτk = sV

T∑
τk=1

αtq ,τk

RV∑
u=1

a(u)v (xτk)b
(u)
v (xτk).

Rearranging sums:

head(tq) = sV

RV∑
u=1

 T∑
τk=1

(
αtq ,τk a

(u)
v (xτk)

)
b(u)
v (xτk)

 .

The computation of b(u)
v (xτk) from xτk is Θ(TRV dmodeldv) if contextual, or loaded if non-contextual

(where dv is the dimension of bv). Assuming b
(u)
v are available, the weighted summation for each

(tq, u) pair (inner sum over τk) costs Θ(Tdv). Summed over tq = 1 . . . T and u = 1 . . . RV , this stage
is Θ(T 2RV dv). The final scaling by sV is Θ(Tdv).

B.6 Overall Complexity for Single-Head (Specialized)

The dominant costs for a single head, assuming factors A,B are already computed from X:
(i) QK B-Dot Product Stage (P ): Θ(T 2RQRKdh) (shared calculation if multi-head).

(ii) QK A-Factor Combination and Scaling Stage (L′): Θ(T 2RQRK). (Scaling by sQsK is part of
this per-element operation on scores).

(iii) Value Aggregation Stage (including sV scaling): Θ(T 2RV dv).
Total for single head, assuming P is computed once: Θ(T 2(RQRKdh +RQRK +RV dv)).
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B.7 Multi-Head and Batch Extensions (Reuse of B-Dot Products)

QK B-Dot Products (P ): Shared across heads. Cost: Θ(BT 2RQRKdh).
Per-Head QK A-Factor Combination and Scaling (L′): Each head combines its AQ,AK with P
and applies sQsK . Cost: Θ(BHT 2RQRK).
Value Aggregation (including sV ): Assuming BV factors are shared and AV are per-head. Cost:
Θ(BHT 2RV dh). Assuming dv = dh. Total FLOPs for specialized multi-head TPA (full sequence
processing) with batch size B:

FTPA-specialized = Θ(BT 2RQRKdh)︸ ︷︷ ︸
QK B-dot products P

+ Θ(BHT 2RQRK)︸ ︷︷ ︸
Per-head QK A-comb. + sQsK scale

+ Θ(BHT 2RV dh)︸ ︷︷ ︸
Value Aggregation + sV scale

.

Discussion. By contrast, standard multi-head attention typically requires FMHA = Θ(BHT 2dh)
FLOPs (for QK⊤ and attention-weighted V). The specialized TPA can be more efficient if RQRKdh+
HRQRK +HRV dh < 2Hdh. Dividing by Hdh, this condition becomes (RQRK/H) + (RQRK/dh) +
RV < 2. For example, if RQ = RK = RV = 1, the condition is 1/H + 1/dh + 1 < 2, or 1/H +
1/dh < 1, which is generally true for typical H, dh ≥ 2. Thus, with small ranks, TPA can offer
computational savings. Actual speedups also depend critically on memory access patterns and
kernel implementations, as demonstrated by FlashAttention-style approaches. By retaining Q,K,
and V in factorized form, one can bypass the explicit materialization of these large tensors:

xt → Qt, Kτ ,Vτ (materialized)→ (QK⊤)→ softmax(QK⊤)V→ final output.

Instead, the large Q,K,V tensors (each of size B × T × H × dh) are not explicitly formed. The
computation is restructured into rank-based B-dot-product computations, per-head A-factor
combinations, and appropriate scaling. The challenge lies in choosing ranks (RQ, RK , RV ) small
enough to ensure computational benefits while maintaining model quality, and in implementing
the multi-stage kernels efficiently. When ranks are sufficiently small, this specialized approach can
lead to gains in both computation and memory footprint.

B.8 Inference Time Decoding of Different Attention Mechanisms

In autoregressive decoding, we generate the output for the current token xT (where T is the current
sequence length) given cached keys and values from T − 1 previous tokens. We analyze the FLOPs
for computing the attention output for this single query token. For all mechanisms, we analyze the
total FLOPs, including the cost of projecting the current token’s hidden state xT into its respective
Query, Key, and Value representations.
MHA, MQA, and GQA. For Multi-Head Attention (MHA), with H query heads and H distinct
Key/Value heads, the complexity is determined by the dot-product attention and value aggregation
steps.
• Projection: Projecting xT to get a query, key, and value vector for each of the H heads costs

Θ(dmodelHdh).
• Attention: The query vectors interact with a K/V cache of size T , costing Θ(THdh).
• Total MHA: The complexity is Θ(dmodelHdh + THdh).

Multi-Query Attention (MQA) uses H query heads but shares a single Key/Value head
(Hkv = 1). The arithmetic complexity remains the same as MHA for the same number of query
heads.

27



Phase 1: Attention
Score ComputationBQ

BK

∑
d P

d

AQ AK

∑
rq,rk L′

incl. sQ, sK

Softmax α

incl. 1/
√
dh

over key
tokens tk

Phase 2: Value Aggregation

AV

BV

⊙ WAV

∑
tk,rv O

tk, rv

incl. sV

Figure 6: Data flow diagram for specialized TPA computation, avoiding materialization of full
Q,K,V tensors. Phase 1 (Top): Attention Score Computation. Factorized BQ,BK produce shared
dot-products P (summing over feature dimension d). P is combined with factorized AQ,AK and
scaled by sQsK (summing over ranks rq, rk) to form scaled logits L′. These are then scaled by 1/

√
dh

and passed through Softmax to yield attention probabilities α. Phase 2 (Bottom): Value Aggregation.
α weights the factorized AV (conceptually forming WAV

via an einsum-like combination), which
then aggregates with BV and is scaled by sV (summing over key tokens tk and value ranks rv) to
produce the final output O. (Diagram simplifies batch dimensions B; T denotes sequence length; H
is heads; RX are ranks RQ, RK , RV corresponding to indices rq, rk, rv; dh is the feature dimension d
for B factors. Operations

∑
X denote contractions over index X , and ⊙ denotes an einsum-like

combination. Scaling factors sQ, sK , sV are incorporated as described.).
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• Projection: Projecting for H query heads and 1 shared K/V head costs Θ(dmodel(Hdh + 2dh)).
• Attention: The interaction with the cache costs Θ(2THdh).
• Total MQA: The complexity is Θ(dmodeldh(H + 2) + THdh).
Grouped-Query Attention (GQA) uses H query heads and Ng Key/Value head groups (Hkv = Ng).
The arithmetic complexity is also identical to MHA.
• Projection: Projecting for H query heads and Ng K/V head groups costs Θ(dmodel(Hdh+2Ngdh)).
• Attention: The interaction with the cache costs Θ(2THdh).
• Total GQA: The complexity is Θ(dmodeldh(H + 2Ng) + THdh).
MQA and GQA significantly reduce the KV cache size and memory bandwidth requirements
compared to MHA. While the arithmetic FLOP count for the core attention computation (dot
products and weighted sums) is 2THdh for all three if they have the same number of query heads
H and head dimension dh, the practical speedups for MQA/GQA often arise from better memory
access patterns due to smaller K/V caches.
MLA. Multi-Head Latent Attention (MLA), as described in Appendix G.3, uses H heads. For each
head, the key Ki has dimension d′k = dc + dRh , and the value VC

i has dimension d′v = dc.
• Projection: Projecting xM to get compressed and RoPE components for Q, K, and V costs

Θ(dmodel((dc + dRh ) · h+ dc + dRh )).
• Attention: The query vectors interact with a K/V cache of size T , costing Θ(TH(2dc + dRh )).
• Total MLA: The complexity is Θ(dmodel(d

′
c + 2dc + 2dRh ) + TH(2dc + dRh )).

TPA. We use the FlashTPA Decoding algorithm (Algorithm 1) for FLOPs analysis, with N = 1
query token, T cached items, D as feature dimension for BQ/b

K (typically dh), and E for bV

(typically dh). For ranks (RQ, RK , RV ):
• Projection: Projecting xM to all Q, K, V factors costs Θ(dmodel((RQ +RK +RV )(H + dh))).
• Attention: The decoding algorithm’s interaction with the cache costs Θ(T [RK(RQD +HRQ +

H) +RV H(1 + E)]).
• Total for TPA decoding: The overall complexity is Θ(dmodel(RQ+RK+RV )(H+dh)+T [RK(RQD+

HRQ +H) +RV H(1 + E)]).

Example Comparison I.
We compare the total Floating Point Operations (FLOPs) required to process a single token

during autoregressive inference. This analysis separates the initial, constant projection cost from
the attention cost, which scales linearly with the context length T .

The following parameters are used for the comparison:
• Model Dimension: dmodel = 2048

• Heads: H = 32

• Head Dimension: dh = 64 (so D = E = dh)
• GQA Groups: Ng = 4

• MLA Dimensions: dc = 256, dRh = 32, and d′c = 768

MHA:

Projection = 3 · dmodel ·H · dh = 3 · 2048 · 32 · 64 ≈ 12.6× 106

Attention = 2 · T ·H · dh = 4096T
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GQA (Ng = 4):

Projection = dmodel(H + 2Ng)dh = 2048 · (32 + 8) · 64 ≈ 5.2× 106

Attention = 2 · T ·H · dh = 4096T

MLA:

Projection = dmodel((dc + dRh ) · h+ dc + dRh ) = 2048 · ((256 + 32) · 32 + 256 + 32) ≈ 19.5× 106

Attention = T ·H · (2dc + dRh ) = T · 32 · (512 + 32) = 17408T

TPA (RQ = 16, RK = 1, RV = 1):

Projection = dmodel(16 + 1 + 1)(H + dh) = 2048 · (18) · (96) ≈ 3.5× 106

Attention = T · [1(1568) + 1(2080)] = 3648T

TPA (RQ = 16, RK = 2, RV = 2):

Projection = dmodel(16 + 2 + 2)(H + dh) = 2048 · (20) · (96) ≈ 3.9× 106

Attention = T · [2(1568) + 2(2080)] = T · [3136 + 4160] = 7296T

TPA (RQ = 8, RK = 1, RV = 1):

Projection = dmodel(8 + 1 + 1)(H + dh) = 2048 · (10) · (96) ≈ 2.0× 106

Attention = T · [1(800) + 1(2080)] = 2880T

TPA (RQ = 8, RK = 2, RV = 2):

Projection = dmodel(8 + 2 + 2)(H + dh) = 2048 · (12) · (96) ≈ 2.4× 106

Attention = T · [2(800) + 2(2080)] = M · [1600 + 4160] = 5760T

The analysis shows that TPA with low ranks offers a favorable trade-off. Reducing the query
rank (RQ) from 16 to 8 further decreases both the projection and attention costs, making the TPA
(RQ = 8, RK = 1, RV = 1) configuration the most computationally efficient in this comparison,
surpassing GQA and MLA in projection cost. However, increasing key/value ranks (e.g., to
RK = 2, RV = 2) substantially increases the attention cost, though it remains competitive with
MHA.
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Example Comparison II.
We now repeat the analysis for a larger model configuration to observe how these trade-offs

scale.
The following parameters for a larger model are used for this comparison:

• Model Dimension: dmodel = 4096

• Heads: H = 32

• Head Dimension: dh = 128 (so D = E = dh)
• GQA Groups: Ng = 4

• MLA Dimensions: dc = 512, dRh = 64, and d′c = 1536

MHA:

Projection = 3 · 4096 · 32 · 128 ≈ 50.3× 106

Attention = 2 · T · 32 · 128 = 8192T

GQA (Ng = 4):

Projection = 4096 · (32 + 8) · 128 ≈ 21.0× 106

Attention = 2 · T · 32 · 128 = 8192T

MLA:

Projection = 4096 · ((512 + 64) · 32 + 512 + 64) ≈ 77.9× 106

Attention = T · 32 · (1024 + 64) = 34816T

TPA (RQ = 16, RK = 1, RV = 1):

Projection = 4096 · (16 + 1 + 1) · (32 + 128) ≈ 11.8× 106

Attention = T · [1(2592) + 1(4128)] = 6720T

TPA (RQ = 16, RK = 2, RV = 2):

Projection = 4096 · (16 + 2 + 2) · (32 + 128) ≈ 13.1× 106

Attention = T · [2(2592) + 2(4128)] = 13440T

TPA (RQ = 8, RK = 1, RV = 1):

Projection = 4096 · (8 + 1 + 1) · (32 + 128) ≈ 6.6× 106

Attention = T · [1(1312) + 1(4128)] = 5440T

TPA (RQ = 8, RK = 2, RV = 2):

Projection = 4096 · (8 + 2 + 2) · (32 + 128) ≈ 7.9× 106

Attention = T · [2(1312) + 2(4128)] = 10880T

For this larger model configuration, the TPA (RQ = 8, RK = 1, RV = 1) setting is the clear leader
in computational efficiency. It has the lowest projection cost by a substantial margin and the lowest
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attention cost, making it highly suitable for long-context inference. This highlights the effectiveness
of tuning TPA’s ranks to optimize the balance between expressiveness and computational overhead.

Example Comparison III.
Finally, we analyze a very large model configuration (e.g. MoE model with 1∼2T parameters)

to examine the scaling properties of each architecture.
The following parameters are used for this comparison:

• Model Dimension: dmodel = 8192

• Heads: H = 64

• Head Dimension: dh = 128 (so D = E = dh)
• GQA Groups: Ng = 8

• MLA Dimensions: dc = 512, dRh = 64, and d′c = 1536

MHA:

Projection = 3 · 8192 · 64 · 128 ≈ 201.3× 106

Attention = 2 · T · 64 · 128 = 16384T

GQA (Ng = 8):

Projection = 8192 · (64 + 16) · 128 ≈ 83.9× 106

Attention = 2 · T · 64 · 128 = 16384T

MLA:

Projection = 8192 · ((512 + 64) · 64 + 512 + 64) = 306.7× 106

Attention = T · 64 · (2 · 512 + 64) = M · 64 · 1088 = 69632T

TPA (RQ = 16, RK = 1, RV = 1):

Projection = 8192 · (16 + 1 + 1) · (64 + 128) ≈ 28.3× 106

Attention = T · [1(3136) + 1(8256)] = 11392T

TPA (RQ = 16, RK = 2, RV = 2):

Projection = 8192 · (16 + 2 + 2) · (64 + 128) ≈ 31.5× 106

Attention = T · [2(3136) + 2(8256)] = 22784T

TPA (RQ = 8, RK = 1, RV = 1):

Projection = 8192 · (8 + 1 + 1) · (64 + 128) ≈ 15.7× 106

Attention = T · [1(1600) + 1(8256)] = 9856T

TPA (RQ = 8, RK = 2, RV = 2):

Projection = 8192 · (8 + 2 + 2) · (64 + 128) ≈ 18.9× 106

Attention = T · [2(1600) + 2(8256)] = 19712T
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At this very large scale, the cost of MHA’s projections becomes prohibitive. While MLA’s
projection cost is competitive, its attention cost is over four times that of MHA, making it extremely
expensive for long sequences. TPA with low ranks (RQ = 8, RK = 1, RV = 1) proves to be the
superior architecture, offering the lowest attention cost and a projection cost that is more than
an order of magnitude smaller than MHA and MLA’s, cementing its advantage as model size
increases.

C More on FlashTPA Decoding Algorithm

This section provides further details on the FlashTPA Decoding algorithm (see Algorithm 1),
including the setup of factorized components.
Factorized Component Setup for FlashTPA Decoding. Let B be the batch size, N the number of
query tokens (which is 1 for decoding, N = 1), T the current length of the KV cache, H the number
of attention heads, and RQ the rank of the query factorization. The feature dimensions for the
factorized components are D (for query BQ and key bK) and E (for value bV ). Typically, D and E
correspond to the head dimension dh.

The query for the current token xt (where t is the current time step, N = 1) is factorized
as Qt = 1

RQ
AQ(xt)

⊤BQ(xt), where AQ(xt) ∈ RH×RQ (derived from the input tensor ‘Aq’ of
shape (B, 1, H,RQ) for the current token) and BQ(xt) ∈ RRQ×D (similarly from ‘Bq’ of shape
(B, 1, RQ, D)).

The cached keys Ks and values Vs for past tokens s ∈ [1, T ] are stored in their factorized
form. For clarity in the data flow diagram (Figure 2 in the main paper) and the pseudo-code in
Algorithm 1, we present the case where cached keys and values use ranks RK = 1 and RV = 1. The
general TPA formulation allows for RK > 1 and RV > 1 for cached items (by storing, for example,
AK(xs) ∈ RRK×H and BK(xs) ∈ RRK×D). The einsum operations detailed in Algorithm 1 can
be extended to accommodate higher ranks for keys and values by including summations over
these additional rank dimensions. For RK = 1 and RV = 1, the cached s-th key and value are:
Ks = aK(xs)⊗bK(xs) ∈ RH×D, Vs = aV (xs)⊗bV (xs) ∈ RH×E . Here, aK(xs) ∈ RH (from the
cached tensor aKcache of shape (B, T,H)), bK(xs) ∈ RD (from bKcache of shape (B, T,D)), aV (xs) ∈ RH

(from aVcache of shape (B, T,H)), and bV (xs) ∈ RE (from bVcache of shape (B, T,E)).

C.1 Detailed Computation Steps of FlashTPA Decoding Algorithm

The algorithm proceeds through a series of einsum operations, which correspond to specific tensor
contractions:
1. Compute BQ-bK inner products (S(1)): For each query (batch b, query index n = 0), each

query rank component r, and each cached key position m, we compute the dot product of the
D-dimensional feature vector of the r-th query factor (BQ)b,n,r,: with the D-dimensional feature
vector of the m-th cached key (bKcache)b,m,:.

S
(1)
b,n,m,r =

D∑
d=1

(BQ)b,n,r,d · (bKcache)b,m,d.

This step captures the similarity between the feature parts of the query factors and the cached
key factors.
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2. Combine with query factor AQ (S(2)): The result S(1) is then combined with the head-specific
query factors AQ. For each head h, the contributions from all query ranks r are summed up.

S
(2)
b,n,m,h =

RQ∑
r=1

(AQ)b,n,h,r · S
(1)
b,n,m,r.

This yields an intermediate score for each query, cached key, and head.
3. Incorporate cached key factor aKcache for full logits (L): The head-specific factor of the cached

keys, aKcache, is multiplied with S(2) to produce the final unscaled attention logits.

Lb,h,n,m = S
(2)
b,n,m,h · (a

K
cache)b,m,h.

This logit Lb,h,n,m represents s−1
Q · (QtK

⊤
m)h, i.e., the dot product between the query Qt and the

m-th cached key Km for head h, scaled by RQ (since sQ = 1/RQ). The ‘einsum‘ operation also
rearranges dimensions to (B,H,N, T ) for the subsequent softmax operation.

4. Apply Scaling and Softmax (α): The logits L are scaled by the product of sQ (e.g., 1/RQ), sK
(e.g., 1/RK , which is 1 if RK = 1), and stotal (e.g., 1/

√
D, where D is the dimension used for dot

products, typically dh). Softmax is then applied across the T cached key positions for each head
independently.

αb,h,n,m = Softmaxm (Lb,h,n,m · sQ · sK · stotal) .

These are the attention probabilities.
5. Compute weighted sum with cached value factor aVcache (O(A)): The attention probabilities α

are used to weight the head-specific factors of the cached values, aVcache.

O
(A)
b,n,m,h = αb,h,n,m · (aVcache)b,m,h.

This step prepares the value components for the final aggregation. The ‘einsum‘ operation also
reorders dimensions to (B,N, T,H).

6. Incorporate cached value factor bVcache and apply final scaling (O): Finally, the intermediate
weighted value factors O(A) are combined with the feature-specific factors of the cached values,
bVcache, by summing over the T cached positions. The result is then scaled by sV (e.g., 1/RV ,
which is 1 if RV = 1).

Ob,n,h,e =

(
T∑

m=1

O
(A)
b,n,m,h · (b

V
cache)b,m,e

)
· sV .

This produces the final output tensor of shape (B, 1, H,E).

C.2 Triton FlashTPA Decoding Kernel

We implement the experiments using Triton language [56], and the detailed implementation pseudo
code is displayed in Algorithm 3. The Triton FlashTPA decoding kernel supports parallelism across
the number of heads, rank, and head dimensions. And in 3, we will show the experiment results
with this kernel.
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C.3 Additional Experimental Results

The following figures present additional speed comparisons for different embedding dimensions,
with dh = 64 maintained. The y-axis represents log2(time) in seconds (lower is faster), and the
x-axis represents log2(sequence length).
Detailed Analysis of Figure 5 (Main Text; Embedding Dimension 2048): Figure 5 in the main
paper depicts speed comparisons for an embedding dimension of 2048. The results indicate that
FlashTPA (blue line) is highly competitive. Across all tested batch sizes (1 to 16) for dmodel = 2048:
• MHA (orange line) is consistently the slowest mechanism, with its decoding time increasing

most rapidly with sequence length.
• MQA (green line) and GQA (red line) offer significant speedups over MHA and perform very

similarly to each other, often overlapping in the plots.
• MLA (purple line) demonstrates strong performance, generally being faster than MQA/GQA,

particularly at longer sequence lengths.
• FlashTPA shows excellent scalability. While at very short sequence lengths (e.g., 212 to 213), its

performance is comparable to MQA/GQA and MLA, its decoding time increases at a notably
slower rate with sequence length. Consequently, FlashTPA becomes significantly faster than
MQA/GQA for sequences longer than approximately 214.

• Compared to MLA, FlashTPA is consistently among the top two performers. In many instances,
particularly at sequence lengths greater than 214 or 215, FlashTPA matches or slightly surpasses
MLA in speed. The logarithmic scale for time suggests that these differences can be substantial
in practice for very long contexts. For example, at a sequence length of 219 across various batch
sizes, FlashTPA often shows a visible advantage over MLA.

Figure 7 (Embedding Dimension 3072): With a larger embedding dimension of 3072, the relative
performance trends observed in Figure 5 largely persist.
• FlashTPA (blue line) remains one of the most efficient decoding methods. MHA (orange line)

is consistently the slowest, while MQA (green line) and GQA (red line) offer considerable
improvements over MHA.

• MLA (purple line) and FlashTPA are the top two performers. FlashTPA consistently matches
or exceeds the speed of MLA, particularly at longer sequence lengths (e.g., beyond 215 or 216

depending on the batch size). Its advantage often becomes more pronounced at the longest
sequences tested (219). For instance, in batch size 1, TPA is clearly faster than MLA for sequence
lengths 216 and above. A similar trend is seen across other batch sizes, where TPA maintains a
competitive edge or becomes superior at longer contexts.

This suggests that FlashTPA’s efficiency is well-maintained even as the model’s embedding dimen-
sion increases.
Figure 8 (Embedding Dimension 1024): For a smaller embedding dimension of 1024, similar trends
are observed:
• FlashTPA (blue line) is highly competitive. MHA (orange line) remains the least performant.

MQA (green line) and GQA (red line) are faster than MHA.
• At very short sequence lengths (around 212 to 213), MQA/GQA can be slightly faster than or

comparable to TPA and MLA, especially for smaller batch sizes (e.g., Batch Size 1).
• However, as sequence length increases, both MLA (purple line) and FlashTPA demonstrate

superior scalability. FlashTPA generally matches or outperforms MLA, particularly for sequences
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longer than 215. For example, with a batch size of 16, TPA shows a clear speed advantage over
MLA for sequence lengths 216 and greater.

These results across different embedding dimensions highlight the robustness of FlashTPA’s de-
coding speed advantages, especially for long sequences where it consistently ranks as one of the
fastest, if not the fastest, attention mechanisms among those tested.
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Figure 7: Decoding time comparison of different attention mechanisms with an embedding dimen-
sion of 3072 and dh = 64.
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Figure 8: Decoding time comparison of different attention mechanisms with an embedding dimen-
sion of 1024 and dh = 64.
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Algorithm 3 Triton FlashTPA Decoding Kernel
Require: Input Tensors: AQ(B,N,H,RQ), aK(B,M,H), aV (B,M,H), BQ(B,N,RQ, D), bK(B,M,D),

bV (B,M,E)
Require: Scaling factors: stotal, sQ, sK , sV ; Dimensions: B,N(= 1),M,H,RQ, D,E
Require: Kernel Block dims: BH , BR, BD, BE ; Sequence Blocking: Mblock,Mchunk
Require: Program IDs: pidB

, pidH
, pidM

Ensure: Partial Output Opartial(B,NumM , N,H,E), Log-Sum-Exp LSEpartial(B,NumM , H)

1: b← pidB
; hstart ← pidH

·BH

2: mblock_start ← pidM
·Mblock; mblock_end ← min((pidM

+ 1) ·Mblock,M)
3: ▷ BH , BR, BD, BE are tile sizes for dimensions H, R, D, E respectively.

4: ▷ Initialize accumulators for the head block
5: oaccum ← 0(E×BH); mmax ← −∞(BH); sexp_sum ← 0(BH); cscale ← stotal · sQ · sK

6: ▷ Load query factors (fixed for this program as N=1)
7: Load A

(RQ×BH)
Q,local from AQ[b, 0, hstart . . . , :]

8: Load B
(D×RQ)
Q,local from BQ[b, 0, :, :] ▷ Dimensions may be transposed after loading for matmul

9: ▷ Iterate over Mchunk-sized chunks within the K/V block
10: for mchunk_start from mblock_start to mblock_end − 1 step Mchunk do
11: mchunk_end ← min(mchunk_start +Mchunk,mblock_end)
12: Mcurr_chunk ← mchunk_end −mchunk_start
13: ▷ Load K/V factors for the current chunk
14: Load aKchunk(Mcurr_chunk, BH); aVchunk(Mcurr_chunk, BH); bKchunk(Mcurr_chunk, D); bVchunk(E,Mcurr_chunk) ▷

Layouts optimized for memory access and matmuls
15: bVchunk ← bVchunk · sV
16: ▷ Core TPA Score Calculation for the chunk
17: S1chunk ←MatMul(bKchunk,BQ,local) ▷ Shape: (Mcurr_chunk, RQ)
18: S2chunk ←MatMul(S1chunk,AQ,local) ▷ Shape: (Mcurr_chunk, BH)
19: S3chunk ← S2chunk ⊙ aKchunk · cscale ▷ Shape: (Mcurr_chunk, BH)
20: ▷ Online Softmax Update for the chunk
21: mmax_local ← maxaxis=0(S3chunk) ▷ Shape: (BH)
22: mmax_new ← max(mmax,mmax_local)
23: pnum ← exp(S3chunk −mmax_new[None, :])
24: sexp_sum_local ←

∑
axis=0(pnum)

25: pweighted_av ← (pnum/sexp_sum_local[None, :])⊙ aVchunk
26: ochunk ←MatMul(bVchunk,pweighted_av) ▷ Shape: (E,BH)
27: ▷ Update global (M-block level) accumulators
28: sexp_sum_prev_rescaled ← sexp_sum · exp(mmax −mmax_new)
29: sexp_sum ← sexp_sum_prev_rescaled + sexp_sum_local
30: ratio← sexp_sum_local/sexp_sum ▷ This is sexp_sum_local/sexp_sum_new
31: oaccum ← (1− ratio) · oaccum + ratio · ochunk
32: mmax ←mmax_new
33: end for

34: ▷ Store partial results for this program’s (batch, head_block, M_block)
35: Store oaccum into Opartial[b, pidM

, 0, hstart . . . , :]
36: LSEval ← log(sexp_sum) +mmax
37: Store LSEval into LSEpartial[b, pidM

, hstart . . . ]
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D Higher-Order Tensor Product Attention

All prior discussions have focused on TPA where the query, key, and value matrices (e.g., Qt ∈
Rh×dh) are formed as a sum of RQ components. Each component is an outer product of two
context-dependent vectors, one spanning the head dimension (Rh) and the other spanning the
feature-per-head dimension (Rdh), as detailed in Section 3.1 (e.g., Qt =

1
RQ

AQ(xt)
⊤BQ(xt) implies

Qt =
∑

r arb
⊤
r where ar are columns of A⊤

Q and b⊤r are rows of BQ). We now generalize this by
introducing additional latent factors in the construction of the feature-per-head vectors, leading to
what we term higher-order TPA. This approach allows for more complex interactions in forming
these feature vectors.

For instance, in a third-order factorization, the query tensor Qt ∈ Rh×dh for a single token t is
constructed as:

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ vec
(
bQ
r (xt) ⊗ cQr (xt)

)
,

where aQr (xt) ∈ Rh. The term bQ
r (xt) ∈ Rdb and the newly introduced factor cQr (xt) ∈ Rdc first

form a matrix bQ
r (xt)⊗ cQr (xt) ∈ Rdb×dc via an outer product (as defined in Section 2). This matrix

is then vectorized by vec(·) into a column vector of dimension dh = dbdc. The final query Qt is
formed by the sum of outer products between aQr (xt) and these resulting dh-dimensional vectors.
Analogous expansions apply to Kt and Vt.

The additional factor cQr (xt) can be viewed as a learnable, context-dependent modulation or
gating term for the features generated by bQ

r (xt).

bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , dh = dbdc.

This higher-order construction can enhance expressiveness. While introducing cQr increases the
parameter count for the factors, it might allow for the use of smaller base ranks (RQ, RK , RV ) to
achieve comparable representational power, thus offering a different design choice. One could also
explore tying or sharing cQr across queries, keys, and values to manage parameter overhead.

From a memory perspective during inference, higher-order TPA maintains the benefit of
factorized KV caching. Only the constituent factors aK(xt),bK(xt), cK(xt) (and similarly for
values) for each past token need to be stored. A trade-off arises between model capacity and the
overhead of memory and computation. Higher-order tensor decompositions can provide additional
flexibility and potentially increased capacity.

D.1 RoPE Compatibility in Higher-Order TPA

Rotary positional embeddings (RoPE) remain compatible with higher-order factorizations. In
second-order TPA, RoPE applies rotations to the dh-dimensional feature vectors. This compatibility
extends to higher-order TPA. Consider the case where RoPE is intended to primarily rotate feature
pairs derived from the bQ

r (xt) components, while the structural influence of cQr (xt) components on
the dh-dimensional vector is preserved. More formally, RoPE acts on the dh-dimensional vector
vec(bQ

r ⊗ cQr ) such that the transformation is equivalent to rotating bQ
r to b̃Q

r = Rtb
Q
r (where Rt is

the RoPE rotation matrix for db dimensions) and then forming vec(b̃Q
r ⊗ cQr ). This is achieved by a
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specific RoPE transformation matrix Tt acting on the full dh-dimensional vector, as stated in the
following theorem.

Theorem D.1 (RoPE Compatibility in Higher-Order TPA). Consider the higher-order (3-order)
Tensor Product Attention (TPA) query factorization

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rh×dh ,

where aQr (xt) ∈ Rh, bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , with dh = dbdc. Define the RoPE-transformed

query as Q̃t = RoPEt

(
Qt

)
= QtTt, where

Tt = Idc ⊗ (Rt)
⊤ =


(Rt)

⊤ · · · 0 0
0 (Rt)

⊤ · · · 0
...

...
. . .

...
0 0 · · · (Rt)

⊤

 ∈ Rdh×dh ,

Idc is the identity matrix of size dc × dc, and Rt ∈ Rdb×db (db ∈ Z+ is even) is the standard RoPE
block-diagonal matrix composed of 2× 2 rotation matrices:

Rt =



cos(tθ1) − sin(tθ1)
sin(tθ1) cos(tθ1)

cos(tθ2) − sin(tθ2)
sin(tθ2) cos(tθ2)

. . .
cos(tθdb/2) − sin(tθdb/2)

sin(tθdb/2) cos(tθdb/2)


,

for t ∈ {1, . . . , T} and j ∈ {1, . . . , db/2}. The transformation Tt = Idc ⊗ (Rt)
⊤ operates on the

dh-dimensional vectorized features by post-multiplication. This structure of Tt ensures that the
rotation effectively applied to the bQ

r (xt) component (which is a column vector) corresponds to
a pre-multiplication by Rt, as detailed in the proof (Appendix E.2). This preserves the structure
induced by cQr (xt) while rotating bQ

r (xt).
Under these conditions, the RoPE-transformed query RoPEt

(
Qt

)
admits a higher-order TPA

factorization of the same rank RQ:

1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
b̃Q
r (xt)⊗ cQr (xt)

)
= RoPEt

(
Qt

)
, (D.1)

where b̃Q
r (xt) = Rtb

Q
r (xt).

Please see Appendix E.2 for the proof. For fourth-order or higher, this result still holds.
To assess its empirical performance, we implemented third-order TPA. Table 4 lists the eval-

uation results for a small model. These results provide an initial indication of its viability. A
comprehensive comparison with second-order TPA variants of similar parameter counts or ranks
would be necessary to fully evaluate the trade-offs.
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Table 4: The evaluation results of small models with third-order TPA pre-trained using FineWeb-
Edu 100B dataset with lm-evaluation-harness. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Few-shot ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

0-shot 49.24 24.91 57.06 34.01 31.80 63.33 50.59 23.23 66.90 44.56
2-shot 53.37 25.34 48.78 34.00 29.20 62.79 52.33 26.41 75.30 45.28

Table 5: The evaluation results of medium models with third-order TPA pre-trained using FineWeb-
Edu 100B dataset with lm-evaluation-harness. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Few-shot ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

0-shot 56.19 29.44 58.36 43.74 33.80 67.95 52.80 24.07 77.20 49.28
2-shot 62.84 30.89 55.69 43.16 33.00 68.01 51.78 26.57 86.90 50.98

E Proofs of Theorems

E.1 Proof of Theorem 3.1

Proof. Because RoPE is a linear orthogonal transform, we can write

Q̃t = QtTt =
1

RQ

(
AQ(xt)

⊤BQ(xt)
)
Tt =

1

RQ
AQ(xt)

⊤(BQ(xt)Tt

)
,

where Tt is the block-diagonal matrix encoding RoPE. This allows us to define

B̃Q(xt) = BQ(xt)Tt,

thereby obtaining

RoPE(Qt) =
1

RQ
AQ(xt)

⊤B̃Q(xt).

Similarly, for the key tensor Ks, we have

K̃s = KsTs =
1

RK

(
AK(xs)

⊤BK(xs)
)
Ts =

1

RK
AK(xs)

⊤(BK(xs)Ts

)
,

which defines

B̃K(xs) = BK(xs)Ts,

and thus

RoPE(Ks) =
1

RK
AK(xs)

⊤B̃K(xs).
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Now, consider the product of the rotated queries and keys:

Q̃t K̃
⊤
s =

1

RQRK

(
AQ(xt)

⊤B̃Q(xt)
)(

AK(xs)
⊤B̃K(xs)

)⊤
=

1

RQRK
AQ(xt)

⊤B̃Q(xt)B̃K(xs)
⊤AK(xs),

Since Tt and Ts encode positional rotations, the product TtT
⊤
s corresponds to a relative rotation

Tt−s. Therefore, we can express the above as

Q̃t K̃
⊤
s =

1

RQRK
AQ(xt)

⊤
(
BQ(xt)TtT

⊤
s BK(xs)

⊤
)
AK(xs)

=
1

RQRK
AQ(xt)

⊤
(
BQ(xt)Tt−sBK(xs)

⊤
)
AK(xs)

=
1

RQRK
AQ(xt)

⊤ (BQ(xt)Tt−s)
(
BK(xs)

⊤AK(xs)
)

=

(
1

RQ
AQ(xt)

⊤BQ(xt)Tt−s

)(
1

RK
AK(xs)

⊤BK(xs)

)⊤
,

This shows that

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

Focusing on individual heads i, the above matrix equality implies:

RoPEt−s(qt,i)
⊤ks,i = q̃⊤

t,ik̃s,i,

where

q̃t,i = RoPE(qt,i) = Ttqt,i ∈ Rdh , k̃s,i = RoPE(ks,i) = Tsks,i ∈ Rdh .

This equality confirms that the relative positional encoding between queries and keys is preserved
under TPA’s factorization and RoPE’s rotation. Thus, TPA maintains compatibility with RoPE. This
completes the proof of Theorem 3.1.

E.2 Proof of Theorem D.1

Theorem D.1 addresses the compatibility of RoPE with higher-order (specifically, 3rd-order) Tensor
Product Attention. The theorem considers the query factorization:

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rh×dh ,

where aQr (xt) ∈ Rh (column vector), bQ
r (xt) ∈ Rdb (column vector), cQr (xt) ∈ Rdc (column vector),

and dh = dbdc. The term bQ
r (xt) ⊗ cQr (xt) is interpreted as the matrix Mr = bQ

r (xt)(c
Q
r (xt))

⊤ ∈
Rdb×dc . The notation a⊗ v for a ∈ Rh and v ∈ Rdh (column vectors) implies the outer product av⊤.
Thus, Qt =

1
RQ

∑RQ

r=1 a
Q
r (xt)(vec(Mr))

⊤.
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The RoPE-transformed query is defined as Q̃t = RoPEt

(
Qt

)
= QtTt. Crucially, for the

theorem’s conclusion to hold as intended (i.e., that the bQ
r component is transformed by pre-

multiplication with the standard RoPE matrix Rt), the global transformation matrix Tt ∈ Rdh×dh

(that post-multiplies Qt) is given by:

Tt = Idc ⊗ (Rt)
⊤,

where Idc is the dc×dc identity matrix, and Rt ∈ Rdb×db is the standard RoPE block-diagonal matrix
that pre-multiplies db-dimensional column vectors (as defined explicitly in the theorem statement
in Section D).

The theorem claims that, under these conditions, Q̃t admits a higher-order TPA factorization:

Q̃t =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
b̃Q
r (xt)⊗ cQr (xt)

)
,

where b̃Q
r (xt) = Rtb

Q
r (xt).

Proof. Let aQr ≡ aQr (xt), b
Q
r ≡ bQ

r (xt), and cQr ≡ cQr (xt) for brevity. Let Mr = bQ
r (c

Q
r )⊤ ∈ Rdb×dc .

Let vr = vec(Mr) ∈ Rdh be the column vector obtained by stacking the columns of Mr. The query
tensor is Qt =

1
RQ

∑RQ

r=1 a
Q
r (vr)

⊤.

The RoPE transformation is Q̃t = QtTt. Substituting the factorization and the revised definition
of Tt:

Q̃t =

 1

RQ

RQ∑
r=1

aQr (vr)
⊤

 (Idc ⊗ (Rt)
⊤)

=
1

RQ

RQ∑
r=1

aQr

(
(vr)

⊤(Idc ⊗ (Rt)
⊤)
)
.

Let’s analyze the transformed vector part for the r-th component: (vr)
⊤(Idc ⊗ (Rt)

⊤). This row
vector is the transpose of ((Idc ⊗ (Rt)

⊤)⊤vr). Let’s compute the pre-multiplying matrix:

((Idc ⊗ (Rt)
⊤)⊤ = (Idc)

⊤ ⊗ ((Rt)
⊤)⊤ = Idc ⊗Rt.

So, the column vector transformation is (Idc ⊗Rt)vr. Substitute vr = vec(Mr) = vec(bQ
r (c

Q
r )⊤):

(Idc ⊗Rt) vec(b
Q
r (c

Q
r )

⊤).

We use the Kronecker product identity: (B0
⊤ ⊗ A0) vec(X0) = vec(A0X0B0). To match our

expression (Idc ⊗ Rt) vec(Mr), we identify: A0 = Rt, B0
⊤ = Idc =⇒ B0 = Idc , X0 = Mr =

bQ
r (c

Q
r )⊤. Applying the identity, we get:

vec
(
Rt(b

Q
r (c

Q
r )

⊤)Idc

)
= vec

(
(Rtb

Q
r )(c

Q
r )

⊤
)
.

Let b̃Q
r = Rtb

Q
r . This is precisely the transformation for the bQ

r component as claimed in the
theorem. So the transformed column vector is vec(b̃Q

r (c
Q
r )⊤). The corresponding row vector in the

sum for Q̃t is therefore (vec(b̃Q
r (c

Q
r )⊤))⊤.
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Substituting this back into the expression for Q̃t:

Q̃t =
1

RQ

RQ∑
r=1

aQr (vec(b̃
Q
r (c

Q
r )

⊤))⊤.

This is equivalent to the theorem’s claimed factorization, using the definition a ⊗ col_vec =
a(col_vec)⊤:

Q̃t =
1

RQ

RQ∑
r=1

aQr ⊗ vec
(
b̃Q
r ⊗ cQr

)
,

where b̃Q
r = Rtb

Q
r . This completes the proof, showing that RoPE can be consistently applied to

higher-order TPA representations if the global RoPE transformation matrix Tt (that post-multiplies
Qt) is appropriately defined as Idc ⊗ (Rt)

⊤, ensuring that the standard RoPE matrix Rt effectively
pre-multiplies the bQ

r component.

F More Related Work

Transformers and Attention. As a sequence-to-sequence architecture, Transformer [59] introduced
Multi-Head Attention (MHA), enabling more effective capture of long-range dependencies. Sub-
sequent work has explored a variety of attention mechanisms aimed at improving scalability
and efficiency, including sparse patterns [9, 48, 15, 29, 26, 30], kernel-based projections [10], and
linearized transformers [58, 24, 43, 68, 53, 66]. To decrease memory usage and circumvent the
limitation of memory bandwidth in training, [45] proposed Multi-Query Attention (MQA) where
multiple query heads share the same key head and value head. To tackle the issue of quality
degradation and instability in training, Grouped-Query Attention (GQA) [2] divides queries into
several groups, and each group of queries shares a single key head and value head. Recently,
DeepSeek-V2 [31] applied multihead latent attention (MLA) to achieve better performance than
MHA while reducing KV cache in inference time by sharing the same low-rank representation of
key and value. Concurrently, [20] proposed Multi-matrix Factorization Attention (MFA), which
can be simply seen as MQA with low-rank factorized Q. Compared to the approaches above,
TPA applied contextual tensor decompositions to represent queries, keys, and values activations
compactly, achieving better reduction on the size of KV cache with improved performance.
KV Cache Optimization. During the auto-regressive inference of Transformers, key and value
(KV) tensors from previous tokens are cached to avoid recomputation, a technique first proposed
by [39]. This Key-Value (KV) cache, while crucial for efficiency, consumes significant memory and
can introduce latency bottlenecks due to memory bandwidth limitations [1]. Consequently, various
studies have explored methods to mitigate these issues. These include KV cache eviction strategies
that discard less significant tokens [69, 61, 7, 1], dynamic sparse attention mechanisms focusing
on selected keys and values [41, 54, 49], offloading the KV cache to CPU memory [16, 25, 52], and
quantizing the KV cache [60, 33, 18]. In contrast to these approaches, TPA focuses on reducing the
intrinsic size of the KV cache by employing tensor-decomposed key and value representations.
Low-Rank Factorizations. Low-rank approximations are widely used to compress model parame-
ters and reduce computational complexity. Notable examples include LoRA [19], which factorizes
weight updates during fine-tuning, and its derivatives tailored for various training scenarios
such as efficient pretraining (ReLoRA [27], MoRA [21]), long-context training (LongLoRA [8],
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SinkLoRA [65]), and continual training (InfLoRA [28], GS-LoRA [70], I-LoRA [40]). These methods
generally produce static low-rank expansions that are independent of the input context. Theoretical
justifications for the expressiveness of low-rank approximations have been provided by [37, 64].
Initialization strategies for these factorization matrices have also been explored: OLoRA [6] uti-
lizes QR-decomposition of pretrained weights for improved language model performance, while
LoLDU [47] employs LDU-decomposition to accelerate LoRA training. Furthermore, AdaLoRA [67]
uses Singular Value Decomposition (SVD) on pretrained weights and introduces parameter impor-
tance scores to dynamically adjust ranks. TPA, in contrast, constructs Q, K, and V tensors using
contextually-aware factorizations, allowing for dynamic adaptation based on the input.

G More on Attention Mechanisms

G.1 Multi-Query Attention (MQA)

Multi-Query Attention (MQA) [45] significantly reduces memory usage, particularly for the KV
cache, by sharing a single key and value projection across all attention heads, while each head
maintains a unique query projection. Given a sequence of input embeddings X ∈ RT×dmodel , the
query, shared key, and shared value tensors are computed as:

Qi = XWQ
i , Kshared = XWK

shared, Vshared = XW V
shared.

Thus, each head i uses a distinct query projection Qi ∈ RT×dh but shares the common key Kshared ∈
RT×dh and value Vshared ∈ RT×dh tensors. The weight matrices are:

WQ
i ∈ Rdmodel×dh , WK

shared,W
V
shared ∈ R dmodel×dh .

The resulting MQA operation is:

MQA(X) = Concat
(

head1, . . . ,headh

)
WO,

where

headi = Attention
(
Qi,Kshared,Vshared

)
.

By sharing key and value projections, MQA substantially reduces memory demands, especially for
the KV cache during autoregressive inference. However, this comes at the cost of reduced model
expressivity, as all heads must utilize the same key and value representations.

G.2 Grouped Query Attention (GQA)

Grouped Query Attention (GQA) [2] generalizes Multi-Head Attention (MHA) and MQA by
dividing the total h attention heads into G groups. Within each group, heads share a common key
and value projection, while each head maintains its own unique query projection. Formally, let g(i)
denote the group index for head i ∈ {1, . . . , h}, where g(i) ∈ {1, . . . , G}. The projections are:

Kg(i) = XWK
g(i), Vg(i) = XW V

g(i), Qi = XWQ
i ,
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and

headi = Attention
(
Qi,Kg(i),Vg(i)

)
.

Here, WK
g and W V

g are the shared weight matrices for group g, each in Rdmodel×dh , and WQ
i ∈

Rdmodel×dh is the query weight matrix for head i. The complete output is again a concatenation of all
heads:

GQA(X) = Concat
(

head1, . . . ,headh

)
WO.

By varying G from 1 (equivalent to MQA) to h (equivalent to MHA), GQA offers a trade-off between
memory efficiency and model capacity.

G.3 Multi-head Latent Attention (MLA)

Multi-head Latent Attention (MLA), as used in DeepSeek-V2 [31] and DeepSeek-V3 [32], introduces
low-rank compression for keys and values to reduce KV caching costs during inference.

CKV = XWDKV ,

Concat
(
KC

1 ,K
C
2 , . . . ,K

C
h

)
= KC = CKV W UK ,

KR = RoPE
(
XWKR

)
,

Ki = Concat
(
KC

i ,K
R
)
,

Concat
(
VC

1 ,V
C
2 , . . . ,V

C
h

)
= VC = CKV W UV ,

Here, WDKV ∈ Rdmodel×dc projects to a compressed dimension dc, W UK ∈ Rdc×(dhh) up-projects
the compressed keys, WKR ∈ Rdmodel×dRh projects to a residual key component for RoPE, and
W UV ∈ Rdc×(dhh) up-projects the compressed values. CKV ∈ RT×dc is the shared compressed
KV latent (where dc ≪ dhh). The RoPE transformation is applied to a separate key embedding
KR ∈ RT×dRh . Thus, only CKV and KR are cached, reducing KV memory usage while largely
preserving performance compared to standard MHA [59].

MLA also compresses the queries, lowering their training-time memory footprint:

CQ = XWDQ,

Concat
(
QC

1 ,Q
C
2 , . . . ,Q

C
h

)
= QC = CQW UQ,

Concat
(
QR

1 , Q
R
2 , . . . , Q

R
h

)
= QR = RoPE

(
CQWQR

)
,

Q = Concat
(
QC ,QR

)
.

The weight matrices are WDQ ∈ Rdmodel×d′c , W UQ ∈ Rd′c×(dhh), and WQR ∈ Rd′c×(dRh h). Here,
CQ ∈ RT×d′c (where d′c ≪ dhh) is the compressed query latent. The final query Qi for each head,
formed by concatenating QC

i and QR
i , has a dimension of dh + dRh .

Given compressed queries, keys, and values, the final attention output for the t-th token is:

Oi = Softmax
(

QiK
⊤
i√

dh+dRh

)
VC

i ,

U = Concat
(
O1,O2, . . . ,Oh

)
WO,
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where Vi is typically VC
i as no residual value component is explicitly defined, and WO ∈

R(dhh)×dmodel is the output projection.
During inference, CKV and KR are cached to accelerate decoding. In detail, if RoPE were

ignored for the compressed components, the inner product q⊤
t,iks,i (where qt,i,ks,i ∈ Rdh) of the

i-th head between t-th token query and s-th token key could be calculated using the current hidden
state xt ∈ Rdmodel and the cached latent state cKV

s ∈ Rdc for the s-th token:

q⊤
t,iks,i = [(W UQ

i )⊤(WDQ
i )⊤xt]

⊤[(W UK
i )⊤cKV

s ] (G.1)

= x⊤
t [W

DQ
i W UQ

i (W UK
i )⊤]cKV

s , (G.2)

where W
(·)
i denotes the i-th head’s portion of the respective weight matrix.

The term [WDQ
i W UQ

i (W UK
i )⊤] could be pre-computed for faster decoding. However, as noted

by [50], this pre-computation strategy is not directly compatible with RoPE if RoPE were applied to
these compressed representations. RoPE applies a rotation matrix Tt ∈ Rdh×dh based on position t
(see Section G.5), satisfying TtT

⊤
s = Tt−s (Equation G.4). If RoPE were applied to the up-projected

QC and KC :

q⊤
t,iks,i = [Tt

⊤(W UQ
i )⊤(WDQ

i )⊤xt]
⊤[Ts

⊤(W UK
i )⊤cKV

s ]

= x⊤
t [W

DQ
i W UQ

i Tt−s(W
UK
i )⊤]cKV

s .
(G.3)

Unlike Equation (G.2), acceleration by pre-computing the term [WDQ
i W UQ

i Tt−s(W
UK
i )⊤] is not

possible because it depends on the relative position (t − s) and thus varies for different (t, s)
pairs. To maintain RoPE compatibility while benefiting from compression, MLA introduces an
additional, smaller key component KR (and similarly QR) to which RoPE is applied, while the
main compressed components KC and VC (derived from CKV ) remain RoPE-free. As we will
demonstrate in Section 3.2 of the main paper, TPA offers a different approach to integrate RoPE
efficiently with factorized attention through its tensor product formulation.

G.4 Multi-matrix Factorization Attention (MFA)

[20] proposed Multi-matrix Factorization Attention (MFA), which can be conceptualized as a
variation of MQA where the shared key and value projections have a dimension dc, and the query
projection for each head is low-rank factorized:

Qi = XWDQW UQ
i , Kshared = XWK

shared, Vshared = XW V
shared,

where

WDQ ∈ Rdmodel×dc , W UQ
i ∈ Rdc×dc , WK

shared,W
V
shared ∈ R dmodel×dc .

G.5 Rotary Position Embedding (RoPE)

Many recent LLMs use rotary position embedding (RoPE; 51) to encode positional information
in the query/key vectors. Specifically, for a vector at position t, RoPE applies a rotation matrix
Tt ∈ Rd×d (where d is the dimension of the query/key vectors, typically dh per head). Tt is

a block-diagonal matrix composed of d/2 rotation blocks of the form
(
cos(tθj) − sin(tθj)
sin(tθj) cos(tθj)

)
for
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j ∈ {1, . . . , d/2}. The frequencies {θj} are typically defined as θj = base−2j/d, with a common base
like 10000. If qt ∈ Rd is a query (or key) row vector for a specific head at position t, RoPE is applied
as:

RoPE(qt) ≜ qtTt.

A key property of RoPE is that the inner product between RoPE-transformed vectors depends only
on their relative position. For a query qt and key ks: (qtTt)(ksTs)

⊤ = qtTtT
⊤
s k

⊤
s = qtTt−sk

⊤
s .

This relies on the property:

TtT
⊤
s = Tt−s, (G.4)

which embeds relative positional information (t− s) into the attention scores.

H More on TPA

Parameter Initialization for TPA Factors. We initialize the weight matrices for TPA factors, such
as W aQ

r , W aK
r , W aV

r , W bQ
r , W bK

r , and W bV
r (or their combined forms W aQ , W bQ , etc.), using

Xavier initialization [14]. Specifically, each entry of a weight matrix is drawn from a uniform
distribution U(−bound, bound), where bound =

√
6/(nin + nout). Here, nin and nout are the input

and output dimensions of the respective weight matrix. This initialization strategy is chosen to
help maintain the variance of activations and gradients as they propagate through the network
layers, contributing to stable training.
TPA with Non-contextual B. In Section 4.1, we have introduced TPA with non-contextual A, where
head-dimension factors aQr ,aKr ,aVr ∈ Rh are fixed. Conversely, one may fix the token-dimension
factors bQ

r ,bK
r ,bV

r ∈ Rdh as learned parameters, while allowing aQr (xt),a
K
r (xt),a

V
r (xt) to adapt to

the input token xt. The key tensor for token t, Kt ∈ Rh×dh , would then be constructed as:

Kt =
1

RK

RK∑
r=1

aKr (xt)⊗ bK
r .

A similar formulation applies to values. This configuration might be effective if the fundamental
token-level features (captured by br) are relatively stable, while their combination across heads
(captured by ar(xt)) needs to adapt to the context. Performance comparisons for TPA with non-
contextual A factors versus non-contextual B factors on small and medium-sized models are
presented in Tables 6, 7, 8, and 9.

Table 6: Evaluation results of small models with TPA using non-contextual A or B factors, pre-
trained on FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). Abbreviations: HellaSw.
= HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 50.17 25.60 57.95 36.13 31.40 64.80 49.57 24.88 64.80 45.03
TPA (non-ctx-B) 47.39 26.37 54.8 32.71 30.2 63.38 50.2 23.13 64.8 43.66

TPA KV Only. A simpler variant involves using a standard linear projection for queries,

Qt = WQxt ∈ Rh×dh ,
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Table 7: Evaluation results of small models with TPA using non-contextual A or B factors, pre-
trained on FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). Abbreviations: HellaSw.
= HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 55.09 27.65 53.82 36.24 30.20 64.53 50.75 26.01 78.60 46.99
TPA (non-ctx-B) 50.8 26.96 57.65 32.4 29.4 63.22 49.57 23.96 66.4 44.48

Table 8: Evaluation results of medium models with TPA using non-contextual A or B factors,
pre-trained on FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). Abbreviations:
HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 58.96 31.48 59.76 45.07 34.80 69.21 53.59 25.42 76.40 50.52
TPA (non-ctx-B) 55.43 29.69 58.32 40.77 34.40 66.92 51.38 25.66 71.10 48.19

Table 9: Evaluation results of medium models with TPA using non-contextual A or B factors,
pre-trained on FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). Abbreviations:
HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

TPA (non-ctx-A) 65.45 33.79 56.88 45.23 33.60 68.61 54.22 25.00 85.00 51.98
TPA (non-ctx-B) 61.20 30.20 55.93 40.45 34.40 68.23 51.78 26.11 78.10 49.60

and factorize only the key and value tensors (Kt,Vt). This approach, termed TPA-KVonly, main-
tains the standard query projection mechanism but still achieves significant KV cache reduction
through factorized key and value representations.
TPA KV with Shared B. Further parameter reduction can be achieved by sharing the token-
dimension factors br between keys and values:

bK
r (xt) = bV

r (xt) (if contextual), or bK
r = bV

r (if non-contextual).

This sharing reduces both parameter count and the KV cache footprint. Although it constrains Kt

and Vt to be constructed from the same token-level basis vectors, this variant can still offer strong
performance with additional memory savings.
Nonlinear Head Factors. Instead of using purely linear transformations to derive the contextual
head-dimension factors aQr (xt),a

K
r (xt),a

V
r (xt), one can introduce element-wise nonlinearities (e.g.,

sigmoid σ(·) or softmax). Applying softmax, for instance, to the coefficients that generate ar(xt)
could be interpreted as a form of Mixture-of-Heads, where the network learns to dynamically
weight different head configurations based on the input context.
Discussion. These variants highlight the flexibility of the TPA framework, allowing for different
trade-offs between memory efficiency, computational cost, and model expressiveness. By carefully
choosing which factor components (head-dimension or token-dimension) are contextual versus non-
contextual, and by adjusting the ranks (RQ, RK , RV ), TPA can not only unify existing mechanisms
like MHA, MQA, and GQA but also significantly reduce KV cache size—potentially by an order of
magnitude—during autoregressive inference.
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I More on Experiments

I.1 Experimental Settings

We list the main architecture hyper-parameters and training devices in Table 10. For all models,
the head dimension dh is fixed at 64. Specific architectural choices include: 2 KV heads for GQA
models; a residual key dimension dRh = 32 for MLA models; and ranks RK = RV = 2 and RQ = 6
for TPA and TPA-KVonly models, unless otherwise specified. Other relevant hyper-parameters are
listed in Table 11.
Training Setup Details. We follow the nanoGPT training configuration [23]. In particular, we
use the AdamW [34] optimizer with (β1, β2) = (0.9, 0.95), a weight decay of 0.1, and gradient
clipping at 1.0. We follow the same setting as nanoGPT that the learning rate is managed by a
cosine annealing scheduler [35] with 2,000 warmup steps and a (total) global batch size of 480.
For the small, medium, large and XL models, we set maximum learning rates of 6× 10−4, 3× 10−4,
2× 10−4, and 1× 10−4 (respectively), and minimum learning rates of 3× 10−5, 6× 10−5, 1× 10−5,
and 1× 10−5 (respectively).

Table 10: The architecture hyper-parameters and training devices of models. Abbreviations: BS. =
Batch Size, GAS. = Gradient Accumulation Steps.

MODEL SIZE PARAMETERS DEVICES MICRO BS. GAS. #LAYERS dMODEL

SMALL 124M 4× A100 GPUS 24 5 12 768
MEDIUM 353M 8× A100 GPUS 20 3 24 1024
LARGE 772M 8× A100 GPUS 15 4 36 1280

XL 1.55B 8× A100 GPUS 6 10 48 1600

Table 11: The architecture hyper-parameters for different models.

MODEL SIZE SMALL MEDIUM LARGE XL

h (MHA) 12 16 20 25
h (MQA) 23 31 39 49
h (GQA) 22 30 38 48
h (MLA) 12 23 34 49

h (TPA-KVONLY) 22 29 37 47
h (TPA) 34 47 61 78

dc (MLA) 256 512 512 512
d′c (MLA) 512 1024 1024 1024
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I.2 Additional Experimental Results

I.2.1 Perplexity Curves

We display the perplexity curves for medium, large, and XL size models in Figure 9.

(a) Validation Perplexity (b) Validation Perplexity (c) Validation Perplexity

Figure 9: The validation perplexity of medium-size (353M) models, large-size (773M), and XL-size
(1.5B) models with different attention mechanisms on the FineWeb-Edu 100B dataset.

I.2.2 Ablation Study on Different Ranks

Figure 10 illustrates the training loss, validation loss, and validation perplexity for XL-sized (1.5B
parameters) TPA models with varying key/value ranks (RK = RV = R, as indicated in the figure
legend), trained on the FineWeb-Edu 100B dataset. Corresponding 0-shot evaluation results are
presented in Table 13 (rows for TPA-KVonly with different RK,V ). These results indicate that
increasing the ranks for key and value factorizations generally improves the performance of the
TPA models.

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 10: The training loss, validation loss and validation perplexity curves of XL-size (1.5B) TPA
models with different key/value ranks (RK = RV = R) on the FineWeb-Edu 100B dataset.
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I.2.3 0-shot Evaluation with lm-evaluation-harness

We present 0-shot evaluation results using the lm-evaluation-harness for small (124M parameters)
and XL (1.5B parameters) models in Tables 12 and 13, respectively.

Table 12: Evaluation results of small models (124M) with different attention mechanisms, pre-
trained on FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 50.63 26.96 59.39 36.18 32.00 64.96 51.85 23.40 70.30 46.19
MQA 49.62 25.34 55.72 35.94 31.40 64.85 51.30 23.37 68.70 45.14
GQA 48.70 25.68 56.15 35.58 31.40 64.91 51.62 23.12 68.20 45.04
MLA 50.21 26.71 58.01 36.25 32.80 64.69 50.59 24.67 71.90 46.20

TPA-KVonly 51.05 26.54 57.25 36.77 32.60 65.02 50.91 23.64 69.70 45.94
TPA 51.26 27.39 57.00 36.68 32.80 64.47 49.72 24.61 72.00 46.21

Table 13: Evaluation results of XL models (1.5B) with different attention mechanisms, pre-trained
on the FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande. If not specified,
TPA and TPA-KVonly models use RK = RV = 2.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.81 35.41 61.90 54.32 37.20 72.74 55.80 25.44 82.80 54.49
MQA 64.10 36.01 62.26 54.38 39.00 72.58 56.43 23.70 81.90 54.48
GQA 63.68 35.92 60.46 54.17 38.40 73.56 56.27 24.77 81.70 54.33
MLA 64.14 35.92 60.12 53.60 39.20 72.25 55.17 24.71 81.60 54.08

TPA-KVonly 65.61 36.77 63.02 54.17 37.00 73.34 54.62 25.02 81.60 54.57
TPA-KVonly (RK,V = 4) 64.52 37.03 63.27 54.89 39.80 72.91 56.51 24.74 81.60 55.03
TPA-KVonly (RK,V = 6) 65.78 35.92 61.71 54.86 38.60 72.69 57.93 25.59 82.20 55.03
TPA 66.71 36.52 61.38 54.03 40.40 72.52 56.83 24.49 82.20 55.01

I.2.4 2-shot Evaluation with lm-evaluation-harness

Similarly, 2-shot evaluation results are provided in Tables 14 (Small), 15 (Medium), 16 (Large), and
17 (XL).

I.3 Ablation Studies on Learning Rates

To assess sensitivity to learning rates, we conducted parallel experiments on medium-sized models
using a learning rate of 3× 10−4 (compared to the default 6× 10−4 used for other medium model
results). The training loss, validation loss, and validation perplexity curves are shown in Figure 11.
Performance on standard benchmarks for these models trained with the 3× 10−4 learning rate are
reported in Tables 18 (0-shot) and 19 (2-shot). The results demonstrate that TPA and TPA-KVonly
maintain their performance advantages over other attention mechanisms even with this alternative
learning rate.
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Table 14: Evaluation results of small models (124M) with different attention mechanisms, pre-
trained on FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 57.66 28.24 57.28 36.43 29.60 64.09 51.14 26.57 82.00 48.11
MQA 53.79 26.35 44.95 34.18 28.80 62.79 52.01 25.91 78.10 45.21
GQA 55.01 25.94 55.72 35.68 31.80 65.29 51.93 25.27 77.80 47.16
MLA 54.76 27.13 58.07 36.13 31.40 65.07 51.30 25.90 78.90 47.63

TPA-KVonly 54.25 27.90 57.06 36.36 31.80 64.31 53.59 26.18 79.20 47.85
TPA 57.53 28.07 56.33 36.49 31.80 64.36 51.14 25.92 79.70 47.93

Table 15: Evaluation results of medium models (353M) with different attention mechanisms, pre-
trained on FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness, default LR 6×10−4). The
best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.73 32.42 58.29 45.89 34.20 68.50 53.20 25.86 88.00 52.34
MQA 64.98 33.62 55.02 45.81 34.00 69.59 53.43 24.30 85.20 51.77
GQA 65.24 33.19 56.54 45.41 34.80 69.04 55.72 24.73 87.90 52.51
MLA 64.98 33.62 53.52 45.94 33.00 68.55 51.85 25.46 89.10 51.78

TPA-KVonly 64.69 32.34 59.48 46.23 35.40 70.08 54.06 25.64 86.30 52.69
TPA 67.97 34.56 57.22 46.87 34.60 69.91 52.01 25.07 89.90 53.12

Table 16: Evaluation results of large models (772M) with different attention mechanisms, pre-
trained on the FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in
each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 67.85 36.35 59.82 50.22 35.00 70.67 53.35 23.92 91.10 54.25
MQA 68.86 36.09 53.79 50.50 37.00 70.89 54.70 25.01 88.00 53.87
GQA 69.15 36.09 58.84 50.29 36.20 70.73 54.22 26.08 90.00 54.62
MLA 70.54 38.74 61.50 51.86 36.00 70.89 54.22 25.47 92.40 55.74

TPA-KVonly 71.34 37.71 59.76 51.10 36.00 71.49 54.62 25.83 90.10 55.33
TPA 70.41 37.71 60.06 51.30 34.00 71.06 54.54 25.79 90.30 55.02
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Table 17: Evaluation results of XL models (1.5B) with different attention mechanisms, pre-trained
on the FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in each
column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande. If not specified,
RK = RV = 2 for TPA and TPA-KVonly models.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 70.83 39.93 59.85 54.05 36.20 72.52 55.17 25.42 91.70 56.18
MQA 71.34 39.76 58.93 54.27 39.40 72.96 57.38 24.74 91.90 56.74
GQA 71.17 39.08 60.18 54.05 37.40 73.07 56.35 24.87 92.20 56.49
MLA 70.79 37.54 50.83 53.33 40.00 72.09 56.51 24.93 91.80 55.31

TPA-KVonly 72.85 39.68 60.92 53.81 37.00 73.34 56.83 26.19 91.30 56.88
TPA-KVonly (RK,V = 4) 72.98 40.27 60.15 54.88 36.80 73.29 56.43 25.50 92.10 56.93
TPA-KVonly (RK,V = 6) 73.95 39.76 58.99 54.73 36.80 72.91 59.04 24.93 92.90 57.11
TPA 71.76 39.16 61.25 53.74 37.80 72.80 55.49 23.86 90.70 56.28

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 11: The training loss, validation loss, and validation perplexity of medium-size (353M)
models (learning rate 3 × 10−4) with different attention mechanisms on the FineWeb-Edu 100B
dataset.

Table 18: The evaluation results of medium models (learning rate 3× 10−4) with different attention
mechanisms pretrained using the FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness).
The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 56.52 29.27 58.84 44.06 35.00 68.44 51.07 25.35 76.40 49.44
MQA 55.68 28.24 60.86 44.17 35.20 68.66 52.72 25.14 72.90 49.29
GQA 54.88 29.61 56.36 43.77 35.20 68.82 52.57 25.41 74.80 49.05
MLA 59.64 29.78 60.73 45.17 34.20 68.66 52.80 25.34 75.70 50.22

TPA-KVonly 57.11 30.03 61.25 44.83 34.60 69.04 54.54 23.35 74.60 49.93
TPA 59.30 31.91 60.98 45.57 34.60 69.48 53.91 24.93 77.20 50.88
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Table 19: The evaluation results of medium models (learning rate 3× 10−4) with different attention
mechanisms pre-trained using the FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness).
The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.44 32.85 59.05 44.18 33.20 68.72 50.12 26.01 87.40 49.44
MQA 64.27 32.94 57.71 44.36 31.80 68.01 51.70 25.99 86.00 51.42
GQA 61.70 32.17 52.81 43.99 33.80 68.50 53.35 24.44 86.40 50.80
MLA 65.95 31.48 50.98 44.99 32.20 68.93 51.93 25.89 88.80 51.24

TPA-KVonly 65.99 33.70 57.49 44.47 34.20 69.53 53.28 24.23 86.50 52.15
TPA 66.54 34.47 58.96 45.35 33.00 69.21 53.99 24.51 91.30 53.04
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