# SD<sup>2</sup>: Self-Distilled Sparse Drafters



Mike Lasby\*†, Nish Sinnadurai, Valavan Manohararajah, Sean Lie, Yani Ioannou<sup>†</sup>, Vithursan Thangarasa



## Motivation

- Do sparse draft models improve speculative decoding?
- Fine-grained sparsity is positioned between dense and layerpruned draft models on the pareto front of accuracy and performance.
- Our prior work [1] demonstrated that self-data distillation effectively aligns layer-pruned draft models to a target model.
- Low latency draft models benefit speculative decoding; however, a high draft token acceptance rate must be maintained to be effective.
- Are dense, layer-pruned, or sparse draft models the best choice for maximizing acceleration with speculative decoding?

- We introduce SD<sup>2</sup>, a novel methodology for obtaining finegrained sparse draft models.
- We demonstrate the superiority of fine-grained sparsity for accelerating speculative decoding and downstream evaluation tasks compared with layer-pruned models.
- We showcase the effectiveness of self-data distillation finetuning for model alignment, even when aligning with a different model family with Universal Assisted Drafting (UAG).
- When paired with optimized sparse representations, we find that the end-to-end acceleration of speculative decoding with finegrained sparse draft models is comparable to and in some cases exceeds that of dense draft models, particularly with larger draft model sizes.

## Method

- One-shot pruning: We leverage SparseGPT [2] for one-shot pruning of the draft model.
- Layer-pruning: We prune sequential decoder blocks with the smallest angular distance between their inputs and outputs following [3].
- Self-data distillation: Generate datasets by prompting the target model with the concatenated inputs and outputs from SFT datasets. The target model outputs are extracted as labels.
- Sparse fine-tuning: The pruned draft models are fine-tuned using the self-data distilled datasets with a static sparse mask.

## Experimental design and analysis

- We prune and fine-tune draft models from the Llama-3.2 and Qwen-2.5 model families.
- Draft models are evaluated on SpecBench and OpenLLM V1 benchmarks
- We measure the latency of our draft models using nm-vLLM [4] and calculate the improvement factor as:

Improvement Factor = 
$$\frac{\text{MAL}}{kc+1}$$
,

Where MAL is the mean number of accepted tokens per round, k is the number of draft tokens speculated per round, and c is the ratio of target/draft model latency or MACs.

## Results

### Speculative decoding improvement factor



Figure 1:Improvement factor of dense, layer-pruned, and SD<sup>2</sup> unstructured Llama and Qwen models drafting for Llama-3.1-70B-Instruct and Qwen-2.5-72B-Instruct, respectively. SD<sup>2</sup> drafters outperform layer-pruned draft models and dense drafters in the 1.5B and 3B model size categories.

#### **Universal assisted drafting**



Figure 2: SpecBench MAL for SD<sup>2</sup> Qwen-2.5 models drafting for Llama-3.1-70B-Instruct in the UAG setting. These results illustrate the benefits of SD<sup>2</sup> for aligning draft models even across different model families. SD<sup>2</sup> Qwen drafters achieve a higher MAL than their dense counterparts.

#### **MACs** analysis



Figure 3: MAL vs MACs for layer-pruned, dense, and sparse draft models. Particularly notable are the Qwen-2.5 unstructured sparse drafters which approach iso-MAC performance compared to the dense models.

#### **Pseudocode**

**Algorithm 1**  $SD^2$ : Self-distilled sparse drafters

- 1: **Input:** Draft model  $M_d$  with parameters  $\theta$ , target model  $M_t$ , calibration dataset  $D_{cal}$ , supervised finetuning dataset  $D_{sft}$ , self-data distillation (SDD) context C, optimizer  $\mathcal{O}$ , learning rate  $\alpha$ , number of iterations T, and batch size N.
- 2: Output: Fine-tuned sparse draft model,  $M'_d$
- 3: **Define** SparsityHook $(\nabla_{\theta}\mathcal{L}_t, \theta, \theta_p)$
- for  $p_i, \frac{\partial \mathcal{L}_t}{\partial p_i} \in \{\theta, \nabla_{\theta} \mathcal{L}_t\}$  do if  $p_i \in \theta_p$  then

- $ext{return } 
  abla_{ heta_s} \mathcal{L}_t$ 8: end Define
- 9:  $M'_d \leftarrow \text{SparseGPT}(M_d, D_{cal})$
- 10:  $\theta_p \leftarrow \{p_i \in \theta \mid p_i = 0\}$
- 11:  $D_{sdd} \leftarrow \emptyset$
- 12: for  $\mathbf{X}_i, \mathbf{Y}_i \in D_{sft}$  do
- $ilde{\mathbf{X}}_i \leftarrow \mathbf{C}||\mathbf{X}_i||\mathbf{Y}_i|$  $\tilde{\mathbf{Y}}_i \leftarrow M_t(\tilde{\mathbf{X}}_i)$
- $D_{sdd}$ .append $((\mathbf{X}_i, \mathbf{\hat{Y}}_i))$
- 16:  $M_d$ .register(partial(SparsityHook( $\theta, \theta_p$ )))
- 17: **for** t = 1 **to** T **do** 
  - $\{(\mathbf{X}_n, \tilde{\mathbf{Y}}_n)\}_{n=1}^N \sim D_{self}$
  - $C_t \leftarrow \sum_{n=1}^N ext{len}( ilde{\mathbf{Y}}_n)$
  - $\mathcal{L}_t \leftarrow \sum_{n=1}^{N} \sum_{j=1}^{\text{len}(\tilde{\mathbf{Y}}_n)} -\log M_d(\tilde{y}_{n,j}|\mathbf{X}_n, \tilde{\mathbf{Y}}_{n,:j-1})$
  - $\mathcal{L}_t \leftarrow \mathcal{L}_t/C_t$
- ▷ .backwards() Triggers SparsityHook
- $abla_{ heta} \mathcal{L}_t \leftarrow \mathcal{L}_t$ .backwards()
- $\theta \leftarrow \mathcal{O}(\theta, \nabla_{\theta} \mathcal{L}_t, \alpha)$ 24:

25: Return:  $M'_d$ 

## References

- [1] V. Thangarasa, G. Venkatesh, M. Lasby, N. Sinnadurai, and S. Lie, "Self-Data Distillation for Recovering Quality in Pruned Large Language Models," presented at the Eighth Conference on Machine Learning and Systems, Feb. 2025.
- [2] E. Frantar and D. Alistarh, "SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot," in Proceedings of the 40th International Conference on Machine Learning, PMLR, Jul. 2023, pp. 10323-10337.
- [3] A. Gromov, K. Tirumala, H. Shapourian, P. Glorioso, and D. Roberts, "The Unreasonable Ineffectiveness of the Deeper Layers," presented at the The Thirteenth International Conference on Learning Representations, Oct. 2024. [4] Neural Magic. 2024. Neural magic nm-vLLM inference engine.

<sup>†</sup> University of Calgary





<sup>\*</sup> Work completed while on internship Cerebras