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• One-shot pruning: We leverage SparseGPT [2] for one-shot 
pruning of the draft model.

• Layer-pruning: We prune sequential decoder blocks with the 
smallest angular distance between their inputs and outputs 
following [3]. 

• Self-data distillation: Generate datasets by prompting the 
target model with the concatenated inputs and outputs from SFT 
datasets. The target model outputs are extracted as labels.

• Sparse fine-tuning: The pruned draft models are fine-tuned 
using the self-data distilled datasets with a static sparse mask.
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• Do sparse draft models improve speculative decoding?
• Fine-grained sparsity is positioned between dense and layer-

pruned draft models on the pareto front of accuracy and 
performance.

• Our prior work [1] demonstrated that self-data distillation 
effectively aligns layer-pruned draft models to a target model.

• Low latency draft models benefit speculative decoding; 
however, a high draft token acceptance rate must be 
maintained to be effective.

• Are dense, layer-pruned, or sparse draft models the best choice 
for maximizing acceleration with speculative decoding?

Motivation Method

Speculative decoding improvement factor

• We introduce SD2, a novel methodology for obtaining fine-
grained sparse draft models.

• We demonstrate the superiority of fine-grained sparsity for 
accelerating speculative decoding and downstream 
evaluation tasks compared with layer-pruned models.

• We showcase the effectiveness of self-data distillation fine-
tuning for model alignment, even when aligning with a 
different model family with Universal Assisted Drafting (UAG).

• When paired with optimized sparse representations, we find that 
the end-to-end acceleration of speculative decoding with fine-
grained sparse draft models is comparable to and in some 
cases exceeds that of dense draft models, particularly with 
larger draft model sizes.

Results
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Figure 1:Improvement factor of dense, layer-pruned, and SD2 unstructured Llama and Qwen models drafting for Llama-3.1-70B-
Instruct and Qwen-2.5-72B-Instruct, respectively. SD2 drafters outperform layer-pruned draft models and dense drafters in the 1.5B and 
3B model size categories. 

Universal assisted drafting MACs analysis

Figure 3: MAL vs MACs for layer-pruned, dense, and 
sparse draft models. Particularly notable are the Qwen-2.5 
unstructured sparse drafters which approach iso-MAC 
performance compared to the dense models.

• We prune and fine-tune draft models from the Llama-3.2 and 
Qwen-2.5 model families.

• Draft models are evaluated on SpecBench and OpenLLM V1 
benchmarks

• We measure the latency of our draft models using nm-vLLM [4] 
and calculate the improvement factor as:

Improvement Factor =
MAL
𝑘𝑐 + 1

,

Where MAL is the mean number of accepted tokens per round, k 
is the number of draft tokens speculated per round, and c is the 
ratio of target/draft model latency or MACs.

Figure 2: SpecBench MAL for SD2 Qwen-2.5 models drafting 
for Llama-3.1-70B-Instruct in the UAG setting. These results 
illustrate the benefits of SD2 for aligning draft models even 
across different model families. SD2 Qwen drafters achieve a 
higher MAL than their dense counterparts.
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ARXIV

Algorithm 1 SD2
: Self-distilled sparse drafters

1: Input: Draft model Md with parameters ω, target
model Mt, calibration dataset Dcal, supervised fine-

tuning dataset Dsft, self-data distillation (SDD)

context C, optimizer O, learning rate ε, number

of iterations T , and batch size N .

2: Output: Fine-tuned sparse draft model, M →
d

3: Define SparsityHook(→ωLt, ω, ωp)
4: for pi,

εLt
εpi

↑ {ω,→ωLt} do

5: if pi ↑ ωp then

6: εLt
εpi

↓ 0

7: return →ωsLt

8: end Define

9: M →
d ↓ SparseGPT(Md, Dcal)

10: ωp ↓ {pi ↑ ω | pi = 0}

11: Dsdd ↓ ↔

12: for Xi,Yi ↑ Dsft do

13: X̃i ↓ C||Xi||Yi

14: Ỹi ↓ Mt(X̃i)

15: Dsdd.append((Xi, Ỹi))

16: Md.register(partial(SparsityHook(ω, ωp)))
17: for t = 1 to T do

18: {(Xn, Ỹn)}
N
n=1 ↗ Dself

19: Ct ↓
∑N

n=1 len(Ỹn)

20: Lt ↓
∑N

n=1

∑len(Ỹn)
j=1 ↘ logMd(ỹn,j |Xn, Ỹn,:j↑1)

21: Lt ↓ Lt/Ct

22: ϑ .backwards() Triggers SparsityHook

23: →ωLt ↓ Lt.backwards()

24: ω ↓ O(ω,→ωLt,ε)

25: Return: M →
d
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