Motivation

Key insights

SD?: Self-Distilled Sparse Drafters

Do sparse draft models improve speculative decoding?

Fine-grained sparsity is positioned between dense and layer-
pruned draft models on the pareto front of accuracy and
performance.

Our prior work [1] demonstrated that self-data distillation
effectively aligns layer-pruned draft models to a target model.

Low latency draft models benefit speculative decoding;
however, a high draft token acceptance rate must be
maintained to be effective.

Are dense, layer-pruned, or sparse draft models the best choice
for maximizing acceleration with speculative decoding?

We introduce SD?, a novel methodology for obtaining fine-
grained sparse draft models.

We demonstrate the superiority of fine-grained sparsity for
accelerating speculative decoding and downstream
evaluation tasks compared with layer-pruned models.

We showcase the effectiveness of self-data distillation fine-
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One-shot pruning: We leverage SparseGPT [2] for one-shot
pruning of the draft model.

Layer-pruning: We prune sequential decoder blocks with the
smallest angular distance between their inputs and outputs
following [3].

Self-data distillation: Generate datasets by prompting the
target model with the concatenated inputs and outputs from SFT
datasets. The target model outputs are extracted as labels.

Sparse fine-tuning: The pruned draft models are fine-tuned
using the self-data distilled datasets with a static sparse mask.

We prune and fine-tune draft models from the Llama-3.2 and
Qwen-2.5 model families.

Draft models are evaluated on SpecBench and OpenLLM V1
benchmarks

We measure the latency of our draft models using nm-vLLM [4]
and calculate the improvement factor as:

MAL
kc+ 1’

tuning for model alignment, even when aligning with a
different model family with Universal Assisted Drafting (UAG).

Improvement Factor =

* When paired with optimized sparse representations, we find that
the end-to-end acceleration of speculative decoding with fine-
grained sparse draft models is comparable to and in some
cases exceeds that of dense draft models, particularly with
larger draft model sizes.

Results

Where MAL is the mean number of accepted tokens per round, k
Is the number of draft tokens speculated per round, and c is the
ratio of target/draft model latency or MACs.
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Figure 1:Improvement factor of dense, layer-pruned, and SD? unstructured Llama and Qwen models drafting for Llama-3.1-70B-
Instruct and Qwen-2.5-72B-Instruct, respectively. SD? drafters outperform layer-pruned draft models and dense drafters in the 1.5B and
3B model size categories.
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