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1. Llama-Nemotron-V1 family

Artificial Analysis Intelligence Index
Intelligence Index incorporates 7 evaluations: MMLU-Pro, GPQA Diamond, Humanity's Last Exam, LiveCodeBench,

Open-weights, open source post-training SW, open post- SciCode, AIME, MATH-500
training & RLHEF data. First open-weights with reasoning
control On/Off.

3 model sizes:

/\ Artificial Analysis

« LN-Nano (8B and 4B)
e LN-Super (49B)
o LN-Ultra (253B)

Smartest open-weights model as of April 2025. The
highest ranking llama variant on Ilmarena.ai

2. Post-training pipeline

Distillation Supervised Fine-Tuning RL for Reasoning RL for Alignment
Improve model efficiency Improve Agentic Skills with Reasoning Improve Scientific Reasoning Improve Instruction
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3. RLVR for Scientific Reasoning 4. Curriculum Learning

While SFT enables strong capabilities through teacher distillation, it limits | | We implement an exploration-driven progressive batching strategy to sys-
performance to the teacher’s level. Large-scale RL with verifiable rewards tematically challenge LN-Ultra during RL training. Data is preprocessed

empowers LN-Ultra to explore beyond imitation and surpass the teacher. by generating 8 responses per question using LN-Super, calculating pass
rates, and discarding easy prompts (pass rate > 75%).
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5. I_N—Ultra Results 0.550

Progressive Batching:

0 25 50 75 100 125 150 175 200
Training Steps

Ultra-SFT
Bl Ultra-RL
B DeepSeek-R1

e (Gaussian distribution targeting difficulty progression across batches

96.6 97.0 97.3

o Early batches: high pass rates (easier examples)
o Later batches: low pass rates (harder examples)
Forces exploration beyond teacher capabilities

Accuracy

0. Links and Resources

NS TS CES TES CEe | Bl BLEgE [ E'
HEEEE SR e o
[y [s] [m]= et

The RL stage is critical for surpassing teacher performance, particularly HE Collection  Technical NeMo-RL POSt-Tl’al"lng HeIpSteer3
' ) Report Dataset
on GPQA where LN-Ultra achieves 76.0% vs DeepSeek-R1’s 71.5%.



