
Labelling Loop: Automated explanations of neurons via LLM labelling. 

1. Constructed a dataset of 500,000 protein sequences7 ( ) annotated with features ( ) and 

computed neuron activations ( ) through the forward pass of each ESM-2 model 

2. Collect the  -top activating proteins and prompt and explainer LLM ( ) to generate   

possible hypothesis ( ) explanations for each neuron 

3. Score the hypotheses via a fine-tuned simulator LLM ( ) that predicts an activation based 

on the features, sequence, and hypothesis. We take the hypothesis that maximizes the 

Pearson Correlation with the true activation 

Generation Loop: Neuron-level intervention to steer towards natural language prompting 

1. Given a natural language input, use an LLM to identify relevant neurons by their labels 

2. Randomly mask a subset of amino acids in the (randomly initialized) input sequence  

3. Pass the sequence through the ESM-2 model, replacing the activations   the with affine 

transformation   for each relevant neuron. Sample new residues from the output 

logits using the model’s softmax distribution, yielding a refined sequence 

4. Repeat steps 2 and 3 for a user specified number of inputs 

x f

ϕ

m E k

h

S

X

Ax + B

•  Existing interpretability efforts on PLMs use Sparse Autoencoders (SAEs) to identify 

features (binding sites, structural motifs, etc.) and steer models1, 2,3 

• However, SAEs introduce optimization instability, architecture specific biases, sensitivity to 

initialization, and human-interpretation which all hinder effectiveness4 

• Neuron-level labeling has emerged as a promising approach for interpreting model 

internals. While per-neuron approaches offer higher granularity, manually labeling 

individual neurons is prohibitively labor-intensive and does not scale to large models. 

• Yet, recent works suggests that LLMs can explain neurons in language models5,6 . This 

enables fine-grained feature identification and facilitates controlled steering 

• Successes of neuron labelling in NLP settings raises key questions: Is neuron-level labelling 

for PLMs possible? Can it enable the same steering & interpretability success as in LLMs?  
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Protein language models (PLMs) encode rich biological information, yet their internal 

neuron representations are poorly understood. We introduce the first automated 

framework for labeling every neuron in a PLM with biologically grounded natural language 

descriptions. Unlike prior approaches relying on sparse autoencoders or manual annotation, 

our method scales to hundreds of thousands of neurons, revealing individual neurons are 

selectively sensitive to diverse biochemical and structural properties. We then develop a 

novel neuron activation-guided steering method to generate proteins with desired traits, 

enabling convergence to target biochemical properties like molecular weight and instability 

index as well as secondary and tertiary structural motifs, including alpha helices and 

canonical Zinc Fingers. We finally show that analysis of labeled neurons in different model 

sizes reveals PLM scaling laws and a structured neuron space distribution.

Characteristic Steering: can we target specific biochemical qualities (ex: “weight”)? 

Introduction

Methods: Labelling and Generation

Generated Labels: what are the types of 

descriptions generated? Does a neuron 

correspond to one or many features?  

Scaling Laws:  Does model size change label quality? Are more niche features present? 

Interpretability Results

• Incorporate Structural Viability into the generation loop, potentially via an RL pipeline 

• Explore the effects of LLM Oversimplification and mitigate potential effects of 

hallucination 

• Label other PLMs and expand labelling to GLMs, exploring different model encodings  

• Explore model pruning — try removing neurons that encode redundant information

Future Works

Steering Results

Chart 3. Successful steering to “high” and “low” values of various characteristics for ESM2-35M (Left) & ESM2-8M (Right)

Secondary Structure Steering:  can we steer 

towards secondary structure (ex: “β-sheets”)?

Tertiary Structure Steering: can we steer 

towards tertiary domains (ex: “Zinc 

Fingers”)? 

Chart 4. PsiPred structures for a base sequence (top), a 

sequence steered to α-helices (middle), and a sequence 

steered to β-sheets. Structures contain small amounts of the 

other characteristic as some neurons contain both features. 

Chart 5. Generated Protein with a Zinc Finger  

— Cys-X(2–4)-Cys-X(12)-His-X(3–5)-His motif 

Negative Steering: are linguistic 

opposites also neuron space opposites? 

Description Locations: what “types” of 

descriptions lie where? Does this change as 

model size grows? 

Chart 6. Negating the generation loop (ex: a   -a) 

sometimes leads flipping characteristic effects

↦

Chart 7.  Labels (layer, neuron number) are one sentence 

descriptors of structures, characteristics, and function. 

Neurons often contain multiple features. 

Chart 8. Distribution of neurons associated with 3 classes 

of descriptors across 3 different sizes of ESM-2. There exist 

general layer locations for each class of descriptor. 

Chart 9. Neurons associated with niche 

structural motifs are only present in 

larger models, suggesting that larger 

models are able to better encode 

biophysical parameters.

Learn More!
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