

Integrating Bilinear Transduction with Message Passing Neural Networks for Improved ADMET Property Prediction

Claire Suen¹, Alan C Cheng¹

¹Modeling and Informatics, Discovery Chemistry, Merck & Co., Inc., South San Francisco, Ca, USA.

Abstract

- The challenge: Deep learning in drug discovery often face censored molecular property datasets⁴. This occurs because measurement limitations in pharmaceutical assays mean exact values beyond certain thresholds aren't recorded.
- **Current limitations:** Standard deep learning methods struggle with this censoring, leading to systematic prediction errors, even for in-distribution molecules.
- **Our solution:** We propose to integrate bilinear transduction^{2,3} into Chemprop's¹ message-passing neural network. This builds on Chemprop's strengths and allows us to leverage domain-specific structural relationships between molecules.

Model Performance with Baselines

Naturally Censored Internal Datasets

Assay	Training Label	$R^2 \uparrow$		$ m RMSE\downarrow$	
		BT	D-MPNN	BT	D-MPNN
CYP 3A4	50 к 100 к $224{,}593$	0.30 ± 0.03 0.32 ± 0.04 0.40 ± 0.04	$\begin{array}{c} 0.26 \pm 0.06 \\ \hline 0.22 \pm 0.04 \\ \underline{0.29 \pm 0.07} \end{array}$	$0.47\pm0.01 \ 0.46\pm0.01 \ 0.43\pm0.01$	$\begin{array}{c} 0.48 \pm 0.02 \\ \hline 0.49 \pm 0.01 \\ 0.47 \pm 0.02 \end{array}$
CYP 2D6	50к 100 к $221,745$	$egin{array}{l} 0.19{\pm}0.05 \ 0.30{\pm}0.04 \ 0.32{\pm}0.04 \end{array}$	-0.02 ± 0.06 0.12 ± 0.04 0.11 ± 0.03	$egin{array}{l} 0.45{\pm}0.01 \ 0.42{\pm}0.01 \ 0.41{\pm}0.01 \end{array}$	$0.51\pm0.02 \\ 0.47\pm0.01 \\ 0.47\pm0.01$
CYP 2C9	50к 100 к $225,026$	$0.08{\pm}0.03 \ 0.19{\pm}0.04 \ 0.24{\pm}0.06$	-0.07 ± 0.10 0.01 ± 0.04 0.05 ± 0.06	$0.50\pm0.01 \ 0.47 \pm 0.01 \ 0.46 \pm 0.02$	$\begin{array}{c} 0.54 \pm 0.03 \\ \hline 0.52 \pm 0.01 \\ 0.51 \pm 0.02 \end{array}$
CAV 1.2	50к 100к	$0.10\pm0.06 \\ 0.11\pm0.05$	$\frac{0.05\pm0.06}{-0.06\pm0.05}$	$\frac{0.27 \pm 0.01}{0.27 \pm 0.01}$	$\frac{0.28 \pm 0.01}{0.29 \pm 0.01}$
HERG MK499	50к 100к	$\frac{0.18 \pm 0.05}{0.23 \pm 0.04}$	$\frac{0.16 \pm 0.03}{0.25 \pm 0.04}$	$\frac{0.48 {\pm} 0.01}{0.46 {\pm} 0.01}$	$\frac{0.48 \pm 0.01}{0.46 \pm 0.01}$

Synthetically Censored Internal Datasets

Assay	Training Label	$R^2 \uparrow$		$\mathrm{RMSE}\downarrow$	
		BT	D-MPNN	BT	D-MPNN
P-GP, RAT	$25^{^{\mathrm{TH}}} \\ 50^{^{\mathrm{TH}}} \\ 75^{^{\mathrm{TH}}}$	$0.57{\pm}0.02 \ 0.40{\pm}0.05 \ -0.03{\pm}0.06$	0.50 ± 0.01 0.18 ± 0.12 -0.50 ± 0.26	$0.35{\pm}0.01 \ 0.29{\pm}0.01 \ 0.22{\pm}0.01$	0.37 ± 0.00 0.34 ± 0.02 0.26 ± 0.02
RAT $F_{u,p}$	$\begin{array}{c} 25^{^{\mathrm{TH}}} \\ 50^{^{\mathrm{TH}}} \\ 75^{^{\mathrm{TH}}} \end{array}$	$\frac{0.57 {\pm} 0.02}{0.51 {\pm} 0.02}$ $0.43 {\pm} 0.02$	$\frac{0.56 \pm 0.01}{0.47 \pm 0.02}$ 0.27 ± 0.04	$\begin{array}{c} \underline{0.30 \pm 0.01} \\ \underline{0.23 \pm 0.01} \\ \mathbf{0.16 \pm 0.00} \end{array}$	$\begin{array}{c} 0.31 \pm 0.00 \\ \hline 0.24 \pm 0.00 \\ \hline 0.18 \pm 0.00 \end{array}$

Synthetically & Naturally Censored Public Datasets

Assay	Training Label	$R^2 \uparrow$		$\mathrm{RMSE} \downarrow$	
		BT	D-MPNN	BT	D-MPNN
MS (Human)	$\begin{array}{c} \mathrm{BASE} \\ 50^{\mathrm{TH}} \\ 75^{\mathrm{TH}} \end{array}$	$0.24\pm0.04 \ 0.21\pm0.05 \ 0.03\pm0.04$	$\begin{array}{c} 0.33 \pm 0.06 \\ \hline 0.08 \pm 0.07 \\ -0.06 \pm 0.02 \end{array}$	$\begin{array}{c} 0.46 {\pm} 0.01 \\ \hline 0.38 {\pm} 0.01 \\ \hline 0.29 {\pm} 0.01 \end{array}$	$\begin{array}{c} 0.43 \pm 0.02 \\ \hline 0.41 \pm 0.02 \\ \hline 0.30 \pm 0.00 \end{array}$
MS (RAT)	$\begin{array}{c} \mathrm{BASE} \\ 50^{\mathrm{TH}} \\ 75^{\mathrm{TH}} \end{array}$	$\frac{0.48 \pm 0.02}{0.14 \pm 0.04}$ 0.06 ± 0.02	$\frac{0.48 \pm 0.02}{0.09 \pm 0.02}$ -0.56 ± 0.12	$\frac{0.46 \pm 0.01}{0.35 \pm 0.01}$ 0.23 \pm 0.00	$\frac{0.46 \pm 0.01}{0.36 \pm 0.00}$ 0.30 ± 0.01
CYP 3A4	4,403	0.52 ± 0.02	0.53 ± 0.02	$\textbf{0.58} {\pm} \textbf{0.01}$	0.61 ± 0.01

- All performance metrics for BT were found to be equal to or better than D-MPNN
- Most significant performance gains were observed for CYP enzyme prediction tasks

CYP 2C9: R² Score vs Number of Anchors CYP 2C9: RMSE vs Number of Anchors CYP 2C9: RMSE vs Number of Anchors O.08 O.08 O.09 O.09 O.001 O.002 O.003 O.004 O.003 O.004 O.004 O.004 O.005 O.004 O.005 O.006 O.006 O.007 O.00

¹Yang, K., Swanson, K., Jin, W., Coley, C., Eiden, P., Gao, H., Guzman-Perez, A., Hopper, T., Kelley, B., Mathea, M., Palmer, A., Settels, V., Jaakkola, T., Jensen, K., & Barzilay, R. (2019). Analyzing learned molecular representations for property prediction. *Journal of Chemical Information and Modeling*, *59*(8), 3370–3388. https://doi.org/10.1021/acs.jcim.9b00237

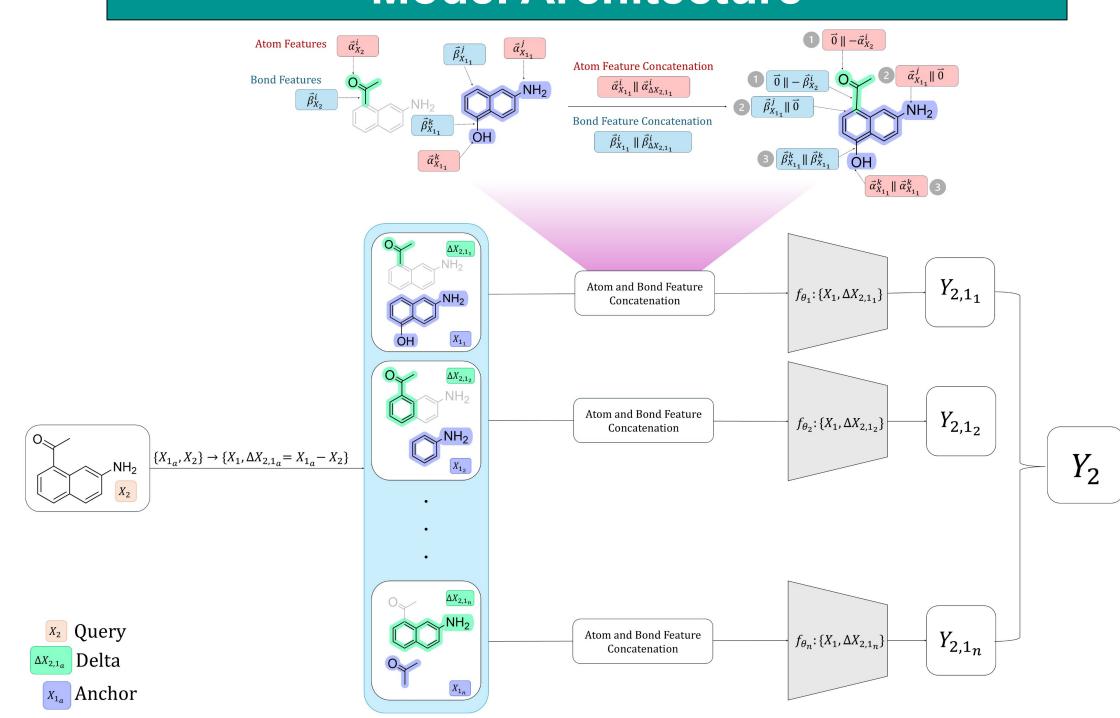
²Segal, N., Netanyahu, A., Greenman, K. P., Agrawal, P., & Gomez-Bombarelli, R. (2025). Known unknowns: Out-of-distribution property prediction

in materials and molecules. *arXiv preprint* arXiv:2502.05970. https://arxiv.org/abs/2502.05970

³Netanyahu, A., Gupta, A., Simchowitz, M., Zhang, K., & Agrawal, P. (2023). Learning to extrapolate: A transductive approach. *arXiv preprint* arXiv:2304.14329. https://arxiv.org/abs/2304.14329

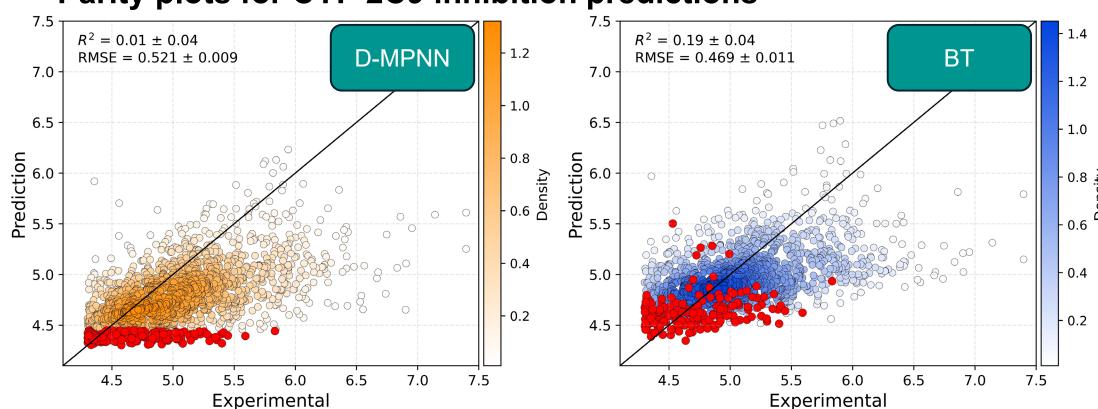
⁴Svensson, E., Friesacher, H. R., Winiwarter, S., Mervin, L., Arany, A., & Engkvist, O. (2025). Enhancing uncertainty quantification in drug discovery with censored regression labels. *Artificial Intelligence in the Life Sciences*, 7, 100128. https://doi.org/10.1016/j.ailsci.2025.100128

Model Architecture

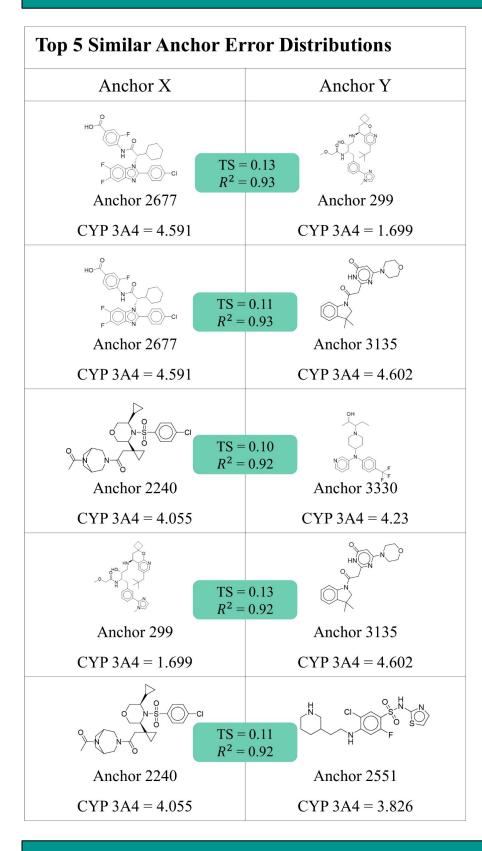


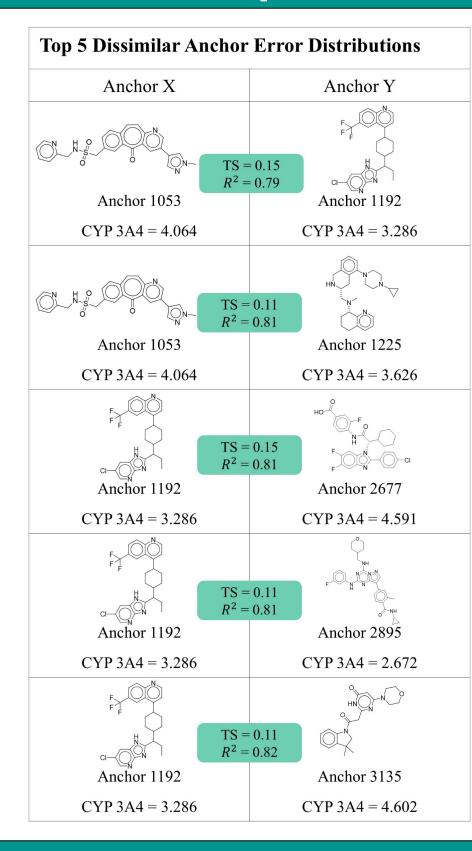
Predictive Performance of BT

Parity plots for CYP 2C9 inhibition predictions



Anchor Error Distribution Comparison





Conclusion

- Our approach significantly improves in-distribution prediction accuracy, particularly for datasets with censored labels where measurement limitations prevent recording exact values.
- We show that while standard Chemprop models can handle small percentages of censored data, they degrade significantly at ~50% censoring, predicting values clustered around the censoring threshold even when true values lie well above.
- We analyze the impact of different anchor selection strategies, showing that performance improvement plateaus around 8-10 anchor molecules while variance continues to decrease with larger anchor sets.