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Motivation
e In medical domain, data imbalance among different patient group ‘ “A 51 years old male patient’s chest
is critical problem. . . . X-ray with effusion”
e Data augmentation is a widely used strategy to solve this problem.
e However, generating specific patient groups data with 3 |
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Our study aims to augment medical images under specific conditions Sy ey ’
(1) Select paﬁent groups for data augmentaﬁon (4) Obtain diverse sketch data from DiffSketcher
augmentation of patient groups the similarity loss which we propose.
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Mk is the majority score and K is the index of patient groups. |D| is the total L ) or {
number of data and |Dx| is the number of data from K’th patient group. v is the |
!abel vector and c is the class index. g indicates the age of the patient and m is the Similarity loss: consists of both low-level and high-level
index of the maximum age. s represents the sex of the patient. distance metrics
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(2) Collect sketch-image pair using DiffSketcher cla Di<iemini (1= 1(xi, X))
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: DiffSketcher is vector graphics sketch generator. We pairs to n—1
train ControlNet.
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(3) Fine-tune pre-trained ControlNet
: Below results are obtained from the training process.
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Block D 8x3 | 1 with edema”
— : we propose a new metric to measure diversity of dataset using
ST saliency map. )
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(a) Stable Diffusion (b) ControlNet
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