
Can we design smaller and efficient heads for multiple medical tasks ?

Search Space: EGNAS searches over GNN operator types (e.g.,
GCN, GAT, GIN), graph topologies (e.g., slice-based, similarity-
based), and architectural hyperparameters (e.g., depth, hidden size,
batch norm). Each architecture is represented as a differentiable
graph with softmax-weighted operations.

The loss function combines task-specific prediction loss with a
memory cost term, balancing model size and inference efficiency.
EGNAS maintains a Pareto front of non-dominated architectures to
guide search toward optimal trade-offs.

EGNAS performs a two-phase search: first, it uses a differentiable
search to optimize architectures jointly; then, it discretizes the top
candidates for final evaluation. Gumbel-softmax enables smooth
optimization over discrete design choices.

Context

Conclusion
We introduced EGNAS, a Pareto-efficient neural architecture search framework that
discovers lightweight, task-specific GNN heads for multi-task medical imaging. Unlike
prior work that optimizes solely for accuracy, EGNAS balances predictive
performance with memory and runtime efficiency through a differentiable, graph-
structured search.
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specific prediction heads remain memory-heavy. 
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collectively consume a significant portion of the
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Evaluation Results
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We evaluated EGNAS on six medical image classification tasks from
the MedNIST3D dataset, using a shared encoder and task-specific
heads. EGNAS was benchmarked against two strong baselines: a
standard DINOv2-MLP setup and the GNN-based architecture from
Kiechle et al. (2024).

Across all tasks, EGNAS achieved
state-of-the-art accuracy, while
reducing task-head memory usage by
an average of 2.1× compared to MLPs
and 1.9× compared to previous GNN
methods.
It also provided faster inference, with
average runtime reductions of 54% and
45% respectively. Importantly, EGNAS
models consistently occupied or
approached the Pareto front,
demonstrating a superior trade-off
between predictive performance and
resource efficiency.

To validate its practical utility, we deployed EGNAS in a real-
world clinical setting in Algeria. Operating on a low-spec dual-
core Intel laptop with no GPU, EGNAS successfully detected

brain tumors with 78% IoU in under 1.5 seconds per image, within
a 300MB memory budget. These results confirm EGNAS’s
potential for accurate, fast, and efficient medical AI in low-

resource environments.


