Crowdsourced Information Authentication: A Graph-based Model from the Science of Hadith

Ayoub Ghriss

University of Colorado, Boulder

Presented at the 4th MusIML Workshop - ICML 2025

Motivation: A Crisis of Trust in Information

Motivation: A Crisis of Trust in Information

The Core Problem

Information is often evaluated based on the perceived authority of the final publisher, while ignoring **how** the information was sourced, transmitted, and shaped along the way.

Islamic scholarship developed 'IIm al-Hadith to address similar challenges.

Islamic scholarship developed 'Ilm al-Hadith to address similar challenges.

A Two-Fold Verification System

- **1** The Content (Matn): Is it consistent with established truths?
- The Chain of Transmission (Isnad): Who transmitted it? Is every narrator in the chain reliable?

Islamic scholarship developed 'Ilm al-Hadith to address similar challenges.

A Two-Fold Verification System

- **1** The Content (Matn): Is it consistent with established truths?
- 2 The Chain of Transmission (Isnad): Who transmitted it? Is every narrator in the chain reliable?

The Power of the Isnad

The authenticity of information depends critically on the integrity of its transmission path.

Each narration *i* consists of:

- A transmitted piece of information, T_i .
- A transmission path, $P_i = (N_{i,1} \rightarrow N_{i,2} \rightarrow \cdots \rightarrow N_{i,m_i})$.

Each narration i consists of:

- A transmitted piece of information, T_i .
- A transmission path, $P_i = (N_{i,1} \rightarrow N_{i,2} \rightarrow \cdots \rightarrow N_{i,m_i})$.

With $\mathcal{N} = \{N_j \mid 1 \leq j \leq n\}$ as the set of narrators, a narration is an element of:

 $\{\mathsf{Set}\ \mathsf{of}\ \mathsf{Contents}\} \times \{\mathsf{Paths}\ \mathsf{over}\ \mathcal{N}\}$

Each narration i consists of:

- A transmitted piece of information, T_i .
- A transmission path, $P_i = (N_{i,1} \rightarrow N_{i,2} \rightarrow \cdots \rightarrow N_{i,m_i})$.

With $\mathcal{N} = \{N_j \mid 1 \leq j \leq n\}$ as the set of narrators, a narration is an element of:

 $\{ \mathsf{Set} \ \mathsf{of} \ \mathsf{Contents} \} \times \{ \mathsf{Paths} \ \mathsf{over} \ \mathcal{N} \}$

The Analogy

- Narrators (\mathcal{N}) are the nodes in a graph.
- Transmissions are directed edges.
- An Isnad (chain) is a path in the graph.

Each narration *i* consists of:

- A transmitted piece of information, T_i .
- A transmission path, $P_i = (N_{i,1} \rightarrow N_{i,2} \rightarrow \cdots \rightarrow N_{i,m_i})$.

With $\mathcal{N} = \{N_j \mid 1 \leq j \leq n\}$ as the set of narrators, a narration is an element of:

 $\{\mathsf{Set}\ \mathsf{of}\ \mathsf{Contents}\} imes \{\mathsf{Paths}\ \mathsf{over}\ \mathcal{N}\}$

The Analogy

- ullet Narrators (\mathcal{N}) are the nodes in a graph.
- Transmissions are directed edges.
- An Isnad (chain) is a path in the graph.

Goal: To create a model that can jointly and iteratively learn:

- **1** The authenticity score of each transmission (S_T) .
- ② The reliability score of each narrator (R_N) .

Scoring Functions

• Path Score: The "weakest link" principle.

$$S_{path}(P_i) = \min_{i} R(N_{i,m_i})$$

Path Overlap: The Edge Jaccard Index.

$$O(P_i, P_j) = \frac{|P_i \cap P_j|}{|P_i \cup P_j|}$$

Scoring Functions

• Path Score: The "weakest link" principle.

$$S_{path}(P_i) = \min_{i} R(N_{i,m_i})$$

Path Overlap: The Edge Jaccard Index.

 $O(P_i, P_j) = \frac{|P_i \cap P_j|}{|P_i \cup P_j|}$

• Information Consistency: Uses expert knowledge, $m(T_i)$.

Example: A Trusted Narrator and a False Report

- T1 (Weak): "Seek knowledge, even if you need to travel to China."
- **T2 (False):** "The Prophet used a compass for prayer." \rightarrow Content score M(T2) = 0.

Example: A Trusted Narrator and a False Report

- T1 (Weak): "Seek knowledge, even if you need to travel to China."
- **T2** (False): "The Prophet used a compass for prayer." \rightarrow Content score M(T2) = 0.

Priors:

- $R_N(Ali) = 0.9$ (Trusted)
- $R_N(Bob) = 0.6$
- $R_N(Carol) = 0.5$ (Neutral)

Step A: Update Authenticity $S_T(T_i)$

• Sort paths for T_i by their S_{path} score.

Step A: Update Authenticity $S_T(T_i)$

• Sort paths for T_i by their S_{path} score. $(S_{path}(P_1) = 0.6, S_{path}(P_2) = 0.5)$

Step A: Update Authenticity $S_T(T_i)$

- Sort paths for T_i by their S_{path} score. $(S_{path}(P_1) = 0.6, S_{path}(P_2) = 0.5)$
- Iteratively compute discounts d_j :

$$d_j = 1 - \max_{P_k \in P_{buffer}} O(P_j, P_k)$$

Step A: Update Authenticity $S_T(T_i)$

• Sort paths for T_i by their S_{path} score. $(S_{path}(P_1) = 0.6, S_{path}(P_2) = 0.5)$

$$d_j = 1 - \max_{P_k \in P_{buffer}} O(P_j, P_k)$$

$$(d_1 = 1, d_2 = 2/3)$$

Step A: Update Authenticity $S_T(T_i)$

• Sort paths for T_i by their S_{path} score. $(S_{path}(P_1) = 0.6, S_{path}(P_2) = 0.5)$

$$d_j = 1 - \max_{P_k \in P_{buffer}} O(P_j, P_k)$$

$$(d_1 = 1, d_2 = 2/3)$$

Compute interim authenticity score:

$$S_{interim} = m(T_i) \cdot \sum_{j} d_j S_{path}(P_j) = 0.93$$

Bob Carol

Step A: Update Authenticity $S_T(T_i)$

- Sort paths for T_i by their S_{path} score. $(S_{nath}(P_1) = 0.6, S_{nath}(P_2) = 0.5)$
- Iteratively compute discounts *d_i*:

$$d_j = 1 - \max_{P_k \in P_{buffer}} O(P_j, P_k)$$

$$(d_1 = 1, d_2 = 2/3)$$

• Compute interim authenticity score:

$$S_{interim} = m(T_i) \cdot \sum_j d_j S_{path}(P_j) = 0.93$$
• Dampen with $\alpha = 0.5$:

$$S_T(T_1) = \sigma(S_{interim}, \alpha) = \frac{S_{interim}}{S_{interim} + \alpha} \approx 0.65$$

 $S_T(T_2) = 0$

Step B: Update Narrator Reliability (R_N)

Principle

A narrator who consistently transmits information deemed authentic is considered reliable.

Step B: Update Narrator Reliability (R_N)

Principle

A narrator who consistently transmits information deemed authentic is considered reliable.

$$R_N(N_i) = \frac{\sum (\text{Auth. of Info } c_j) \times (\text{Contrib. of } N_i \text{ to } c_j)}{\sum (\text{Total Contrib. of } N_i) + \delta}$$

ullet The smoothing factor δ stabilizes scores, especially for narrators with few transmissions.

Step B: Update Narrator Reliability (R_N)

Principle

A narrator who consistently transmits information deemed authentic is considered reliable.

$$R_N(N_i) = \frac{\sum (\text{Auth. of Info } c_j) \times (\text{Contrib. of } N_i \text{ to } c_j)}{\sum (\text{Total Contrib. of } N_i) + \delta}$$

ullet The smoothing factor δ stabilizes scores, especially for narrators with few transmissions.

Final Scores after Convergence ($lpha=0.5, \delta=1$)

Entity	Initial Trust	Final Score
Reliability (Ali)	0.9 (Trusted)	0.21
Reliability (Bob)	0.6	0.21
Reliability (Carol)	0.5 (Neutral)	0.10 (Untrustworthy)

Final Scores and Interpretation

Final Scores after Convergence ($\alpha = 0.5, \delta = 1$)

Entity	Initial Trust	Final Score
Reliability (Ali)	0.9 (Trusted)	0.21
Reliability (Bob)	0.6	0.21
Reliability (Carol)	0.5 (Neutral)	0.10 (Untrustworthy)

Interpretation: The Algorithm's Judgment

- Punishment Fits the Crime: Assigns lowest reliability to the narrator of the false report.
- Trust is Not Absolute: Revises the trust in the initially reliable Ali downwards.
- **Truth Discovery:** Distinguishes between a weak report and a false one, reflecting the collective evidence.

A Volatile and Extreme Reaction

With: $\alpha = \delta = 0.1$.

A Volatile and Extreme Reaction

With: $\alpha = \delta = 0.1$.

Step A: Update Authenticity (S_T **)**

- For T2 (False): Score remains $\frac{0}{2}$ due to the content score M(T2) = 0.
- For T1 (Weak):
 - $S_{interim} \approx 0.93$ (same as before).
 - With a tiny α , the score is barely squashed:

$$S_T^{(1)}(T1) = \frac{0.93}{0.93 + 0.1} \approx 0.9$$

A Volatile and Extreme Reaction

With: $\alpha = \delta = 0.1$.

Step A: Update Authenticity (S_T)

- For T2 (False): Score remains $\frac{0}{2}$ due to the content score M(T2) = 0.
- For T1 (Weak):
 - $S_{interim} \approx 0.93$ (same as before).
 - With a tiny α , the score is barely squashed:

$$S_T^{(1)}(T1) = \frac{0.93}{0.93 + 0.1} \approx 0.9$$

Step B: Update Narrator Reliability (R_N)

With low dampening, the narrator updates are severe:

- $R_N^{(1)}(Bob)$: Reliability **skyrockets** to 0.81.
- $R_N^{(1)}(Ali)$: Trust is tarnished, dropping to 0.58.
- $R_N^{(1)}(Carol)$: Reliability **plummets** to 0.42.

Paper's Argument for Convergence

Compactness and Continuity

The analysis relies on two key properties of the ICUA operator, F:

- Boundedness: All authenticity (S_T) and reliability (R_N) scores are constrained to the interval [0, 1].
- **Continuity:** The update functions (min, sum, division, σ) are continuous.

Paper's Argument for Convergence

Compactness and Continuity

The analysis relies on two key properties of the ICUA operator, F:

- **Boundedness:** All authenticity (S_T) and reliability (R_N) scores are constrained to the interval [0, 1].
- **Continuity:** The update functions (min, sum, division, σ) are continuous.

Core Argument: Brouwer's Fixed-Point Theorem

Since F is a continuous function mapping a compact, convex set to itself, the theorem **guarantees that at least one fixed point** X^* **exists**, where $X^* = F(X^*)$.

Paper's Argument for Convergence

Compactness and Continuity

The analysis relies on two key properties of the ICUA operator, F:

- **Boundedness:** All authenticity (S_T) and reliability (R_N) scores are constrained to the interval [0, 1].
- **Continuity:** The update functions (min, sum, division, σ) are continuous.

Core Argument: Brouwer's Fixed-Point Theorem

Since F is a continuous function mapping a compact, convex set to itself, the theorem **guarantees that at least one fixed point** X^* **exists**, where $X^* = F(X^*)$.

The Crucial Caveat: Existence is Not Convergence

A proof of convergence would require showing F is a **contraction** mapping.

Conclusion and Future Work

Contributions:

- A novel, graph-based framework (ICUA) formalizing principles from traditional Hadith science.
- A method for jointly assessing information authenticity and source reliability.
- Incorporates nuances like the "weakest link" principle and path overlap discounting.

Future Work:

- Developing a full mathematical proof of convergence.
- Making model parameters (α, δ) learnable from data.
- Enhancing the analysis of textual content using advanced NLP.
- Applying the ICUA framework to other domains like fake news detection or peer review.

Thank You

Questions?

Convergence Analysis: The Role of α and δ

Sufficient Condition for Convergence

ICUA is guaranteed to converge if its iterative update function is a **contraction mapping**, meaning the change in scores shrinks with each iteration.

This leads to the following condition:

$$\left(\max_{n} \frac{W_{n}}{W_{n} + \delta}\right) \cdot \left(\frac{C_{max}}{\alpha}\right) < 1$$

- A **trade-off** between the dampening effects of α and δ .
- α (**Transmission Dampening**): Counters signal amplification from transmissions with many paths (C_{max}).
- δ (Narrator Dampening): Stabilizes narrator scores.
- Convergence is achieved when dampening effects (α, δ) overcome the amplification effects inherent in the graph.

ICUA Algorithm: A Flowchart

