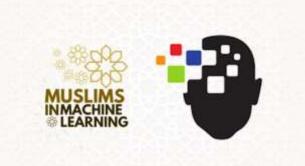


# Evaluating Cumulative Spectral Gradient as a Complexity Measure

School of Digital Science, Universiti Brunei Darussalam, Brunei Darussalam

Haji Gul (23h1710@ubd.edu.bn), Abdul Ghani Naim, Ajaz Ahmad Bhat (ajaz.bhat@ubd.edu.bn)



### Introduction

- This study evaluates the complexity of the tail prediction task in knowledge graphs.
- Challenge: Metrics like MRR measure performance but not dataset complexity.
- Research Questions:
- Is CSG sensitive to parameters K (neighbors) and M (samples)?
- Does CSG correlate with MRR in KGs?
- ❖ How do K and M (sample size) influence CSGs' complexity estimation?

## Methodology

Step 1) Grouping by Tail Entities:

$$T = \{ (h_i, r_i, t_i) \mid h_i \in E, r_i \in R, t_i \in E \},$$

$$G(C_i) = \{ (h, r) \mid (h, r, C_i) \in T \}, \quad \forall C_i \in E,$$

resulting in a mapping:

$$C_i \mapsto G(C_i),$$

 $C_i = \{C_1, C_2, \dots, C_K\},$  **Step 2) Generate embeddings:** 

$$e_h = BERT(h) \in \mathbb{R}^d, \quad e_r = BERT(r) \in \mathbb{R}^d,$$

$$\phi(h,r) = e_h \oplus e_r \in \mathbb{R}^{2d},$$

$$\Phi(C_i) = \{ \phi(h, r) \mid (h, r, C_i) \in T \},\$$

Step 3) Build a similarity matrix:

$$S_{ij} = \frac{1}{Mk} \sum_{\phi_m \in \Phi(C_i)_{\text{sample }} \phi_n \in K(\phi_m)} \mathbb{I}[\phi_n \in \Phi(C_j)],$$

where the indicator function is:

$$\mathbb{I}[\phi_n \in \Phi(C_j)] = \begin{cases} 1, & \text{if } \phi_n \in \Phi(C_j), \\ 0, & \text{otherwise.} \end{cases}$$

Step 4) Graph Laplacian and Spectral Analysis:

$$D_{ii} = \sum_{j=1}^{N} S_{ij}, \quad D_{ij} = 0 \text{ for } i \neq j.$$
 
$$L = I - D^{-1/2} S D^{-1/2},$$

$$D_{ii}^{-1/2} = \frac{1}{\sqrt{D_{ii}}}, \quad \text{for } D_{ii} > 0.$$

$$Lu_i = \lambda_i u_i, \quad u_i \in \mathbb{R}^K, \quad ||u_i|| = 1, \quad 0 \le \lambda_i \le 2.$$

Step 5) Cumulative Spectral Gradient:

$$0 = \lambda_0 \le \lambda_1 \le \ldots \le \lambda_{K-1},$$

Define gaps,  $\delta_i = \lambda_{i+1} - \lambda_i$ ,  $i = 0, 1, \dots, K-2$ ,

Then, 
$$\mathrm{CSG}_{k_c} = \sum_{i=0}^{k_c-1} \delta_i = \lambda_{k_c} - \lambda_0,$$

and, 
$$CSG_{K-1} = \lambda_{K-1} - \lambda_0$$
.

Methodology Graphical View:

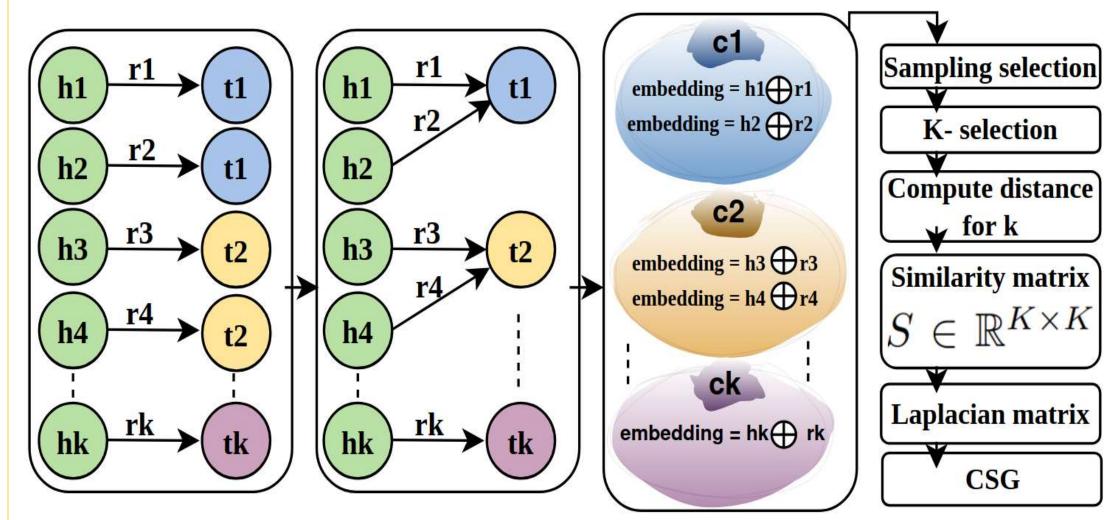


Figure 1: Proposed KG-CSG Methodology

## Results

- **❖ Datasets**: FB15k-237, WN18RR, CoDEx-S, CoDEx-M, CoDEx-L
- **Sensitivity to M:** For small K, M become stable CSG, but its impact is less pronounced than K's.

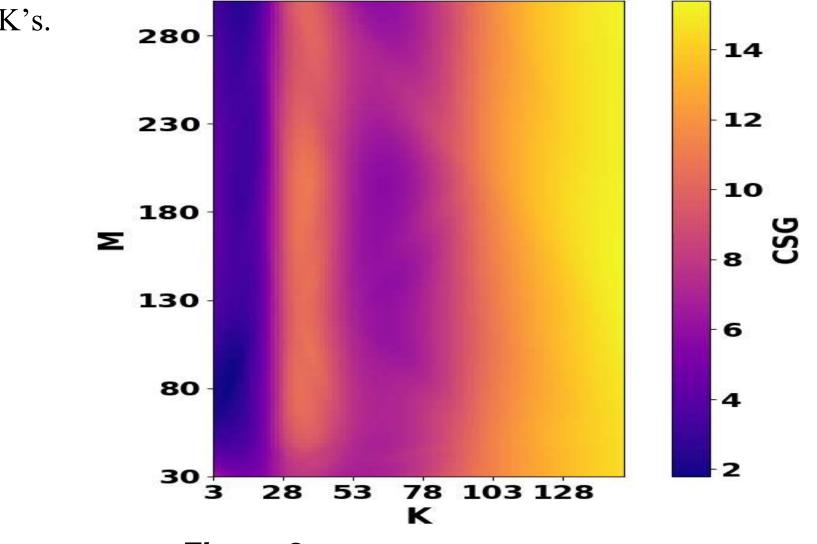


Figure 2: CSG as a function of M and K values

 $Role\ of\ K$ : CSG is deeply sensitive to K.

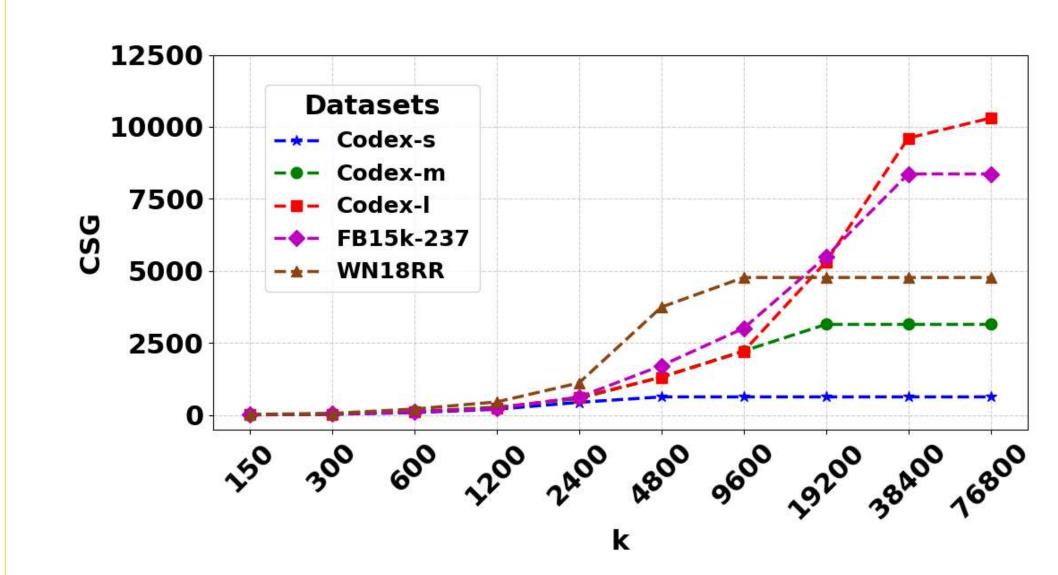


Figure 3: CSG as a function of K values at M = 100

Weak MRR Correlation: CSG does not show much strong correlation with **MRR** (R = -0.64).

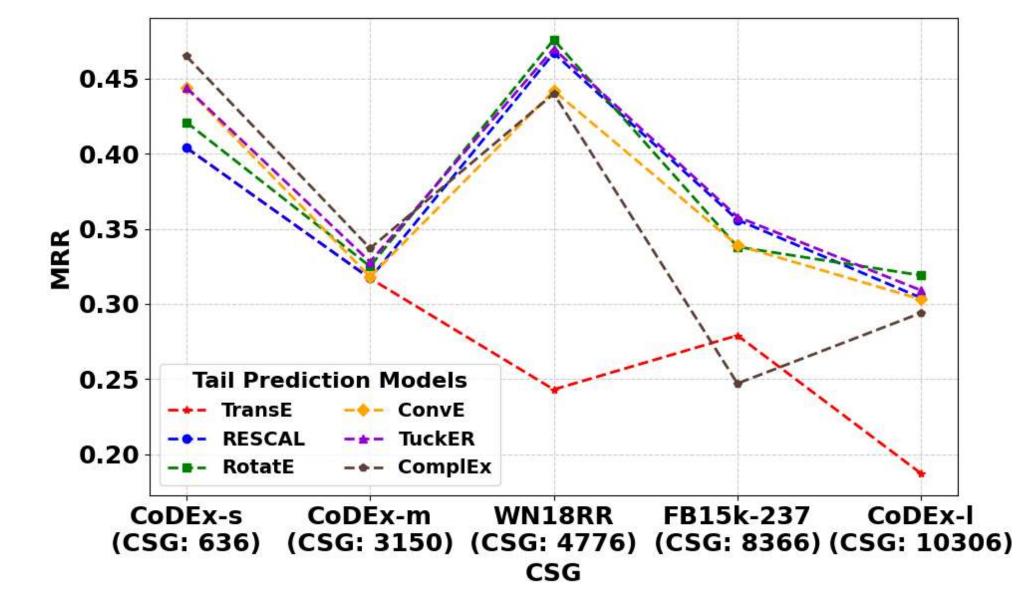


Figure 4: Relation between CSG and MRR.

#### Conclusion

- \* CSG is significantly influenced by the K and M, challenging previous assumptions that K and M had minimal impact
- Parameters K and M deeply influence results.
- ❖ Poor relation between CSG and performance (MRR).
- Future work focus on developing complexity measures tailored to the characteristics of knowledge graphs.