

Interpretable Human Action Recognition: A CNN-GRU Approach with Grad-CAM Insights

1963 I ITAT

Md. Sabir Hossain¹, Mufti Mahmud^{1,3}, and Md. Mahfuzur Rahman^{1,2}

¹Information and Computer Science Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia, ²Interdisciplinary Research Center for Intelligent Secure Systems, KFUPM, Saudi Arabia, ³SDAIA-KFUPM Joint Research Center for AI and Interdisciplinary Research Center for Bio Systems and Machines, KFUPM, Saudi Arabia.

Submission Number: 21

Abstract

This research introduces a CNN-GRU-based Human Action Recognition (HAR) framework combined with Grad-CAM for post-hoc interpretability. The system is trained on a 10-class subset of UCF101 and reaches 96.5% accuracy, outperforming deep CNN baselines while offering transparency in its decision-making.

Key Highlights

- Efficiently captures both spatial and temporal features from video sequences, achieving robust performance across diverse human actions.
- Frame-level visual explanations via Grad-CAM enhance transparency, aiding in understanding and trust in model predictions.
- Achieves 96.5% accuracy on a 10-class subset of UCF101, outperforming standard CNNs and matching state-of-the-art, without requiring complex multi-stream inputs.

Methodology Overview

- 10 frames sampled per UCF101 video
- CNN extracts spatial features per frame
- Conv3D and GRUs model spatio-temporal features
- Grad-CAM highlights critical attention areas

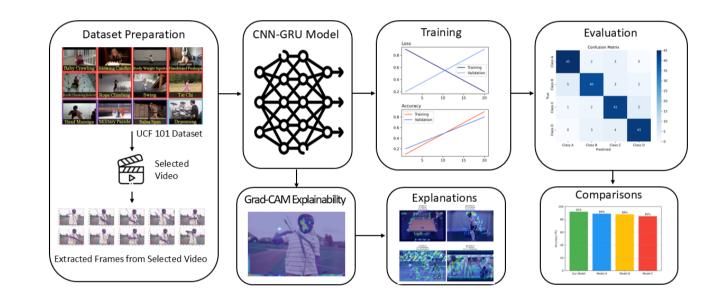


Fig. 1: Overview of the CNN-GRU pipeline with Grad-CAM explainability.

CNN-GRU Architecture

- 3x Conv2D + BatchNorm + Pooling
- Conv3D for spatio-temporal features
- Two GRUs (32, 50 units)
- Dense + Softmax output

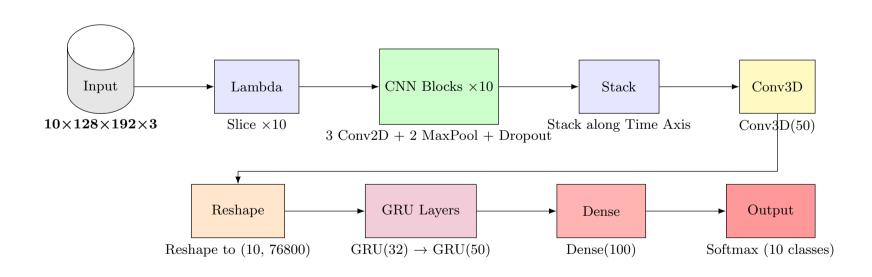


Fig. 2: CNN-GRU architecture for spatio-temporal action recognition.

Grad-CAM Working Pipeline

Gradient-based heatmaps identify class-specific cues

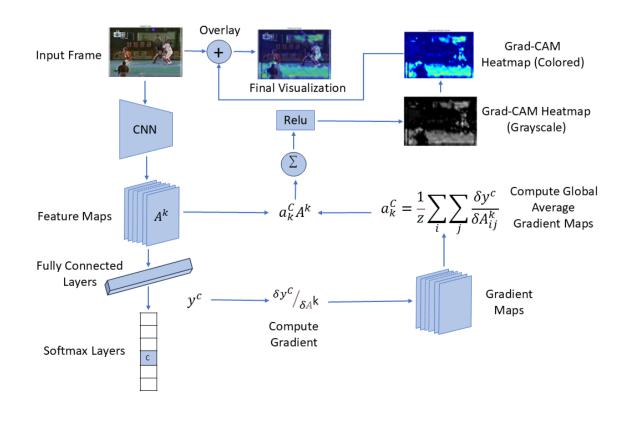


Fig. 3: Grad-CAM pipeline highlighting class-relevant regions.

Experimental Setup and Results

- Dataset: 10 UCF101 classes (100 videos each)
- Accuracy: 96.5%
- Hardware: Tesla T4 GPUs, Keras/TensorFlow

Fig. 4: Grad-CAM heatmaps for correctly classified *Billiards*.

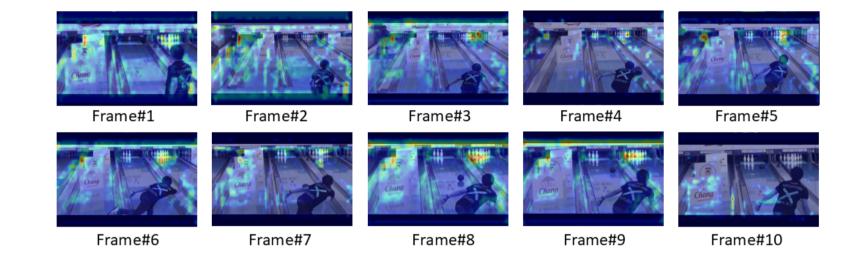


Fig. 5: Grad-CAM heatmaps of misclassified Bowling.

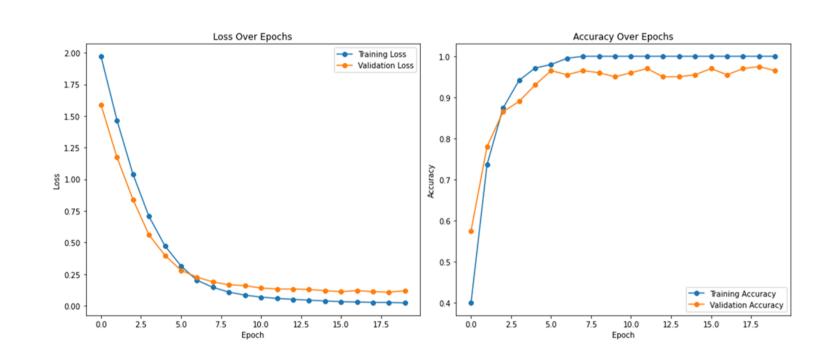


Fig. 6: Training and validation loss and accuracy.

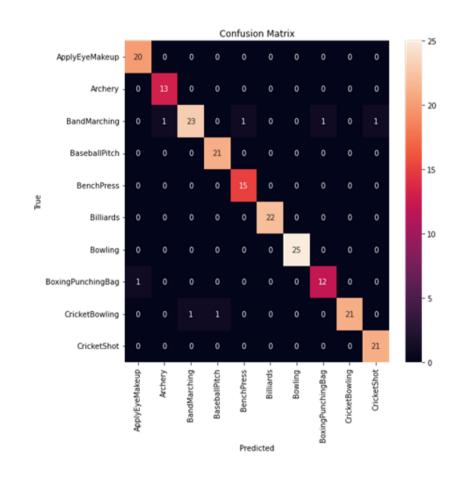


Fig. 7: Confusion matrix for 10-class UCF101 HAR.

Comparative Analysis

Comparison with baselines				Comparison with UCF101 SOTA		
Model	Acc	Prec	Rec	F1	Model	Acc (%)
CNN-GRU	0.97	0.97	0.97	0.96	CNN-GRU (Ours)	96.50
Xception	0.94	0.95	0.94	0.94	A2-Net (ResNet-50)	96.40
DenseNet121	0.92	0.95	0.92	0.93	I3D-LSTM	95.10
InceptionV3	0.90	0.91	0.90	0.89	TS-LSTM	94.10
MobileNet	0.88	0.91	0.88	0.88	Two-stream+LSTM	88.60
ResNet50	0.33	0.30	0.33	0.24	HalluciNet	79.83
VGG16	0.07	0.01	0.07	0.01		
VGG19	0.07	0.00	0.07	0.01		

References

- 1. Abdellatef, E., Al-Makhlasawy, R. M., and Shalaby, W. A. *Detection of human activities using multi-layer convolutional neural network.* Scientific Reports, 15(1):7004, 2025.
- 2. Alam, M. T., Acquaah, Y. T., and Roy, K. *Image-based human action recognition with transfer learning using Grad-CAM for visualization.* In IFIP Int. Conf. on Artificial Intelligence Applications and Innovations, pp. 117–130. Springer, 2024.
- 3. Aquino, G., Costa, M. G. F., and Filho, C. F. F. C. Explaining and visualizing embeddings of one-dimensional convolutional models in human activity recognition tasks. Sensors, 23(9):4409, 2023.