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Abstract

This research introduces a CNN-GRU-based Human Action Recognition
(HAR) framework combined with Grad-CAM for post-hoc interpretability.
The system is trained on a 10-class subset of UCF101 and reaches 96.5%
accuracy, outperforming deep CNN baselines while offering transparency
in its decision-making.

Key Highlights

▶ Efficiently captures both spatial and temporal features from video se-
quences, achieving robust performance across diverse human ac-
tions.

▶ Frame-level visual explanations via Grad-CAM enhance transparency,
aiding in understanding and trust in model predictions.

▶ Achieves 96.5% accuracy on a 10-class subset of UCF101, outper-
forming standard CNNs and matching state-of-the-art, without requir-
ing complex multi-stream inputs.

Methodology Overview

▶ 10 frames sampled per UCF101 video
▶ CNN extracts spatial features per frame
▶ Conv3D and GRUs model spatio-temporal features
▶ Grad-CAM highlights critical attention areas

Fig. 1: Overview of the CNN-GRU pipeline with Grad-CAM explainability.

CNN-GRU Architecture

▶ 3x Conv2D + BatchNorm + Pooling
▶ Conv3D for spatio-temporal features
▶ Two GRUs (32, 50 units)
▶ Dense + Softmax output
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Fig. 2: CNN-GRU architecture for spatio-temporal action recognition.

Grad-CAM Working Pipeline

▶ Gradient-based heatmaps identify class-specific cues

Fig. 3: Grad-CAM pipeline highlighting class-relevant regions.

Experimental Setup and Results

▶ Dataset: 10 UCF101 classes (100 videos each)
▶ Accuracy: 96.5%
▶ Hardware: Tesla T4 GPUs, Keras/TensorFlow

Fig. 4: Grad-CAM heatmaps for correctly classified Billiards.

Fig. 5: Grad-CAM heatmaps of misclassified Bowling.

Fig. 6: Training and validation loss and accuracy.

Fig. 7: Confusion matrix for 10-class UCF101 HAR.

Comparative Analysis

Comparison with baselines

Model Acc Prec Rec F1

CNN-GRU 0.97 0.97 0.97 0.96
Xception 0.94 0.95 0.94 0.94
DenseNet121 0.92 0.95 0.92 0.93
InceptionV3 0.90 0.91 0.90 0.89
MobileNet 0.88 0.91 0.88 0.88
ResNet50 0.33 0.30 0.33 0.24
VGG16 0.07 0.01 0.07 0.01
VGG19 0.07 0.00 0.07 0.01

Comparison with UCF101 SOTA

Model Acc (%)

CNN-GRU (Ours) 96.50
A2-Net (ResNet-50) 96.40
I3D-LSTM 95.10
TS-LSTM 94.10
Two-stream+LSTM 88.60
HalluciNet 79.83
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