Beat them? Join them? Fix them?
Tokenization Research in a Downstream World

Yuval Pinter
Dept. of CS, Ben-Gurion University of the Negev

Tokenization Workshop @ ICML s e

July 18, 2025

A Tale of NLP Science

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov Kai Chen
Google Inc., Mountain View, CA Google Inc., Mountain View, CA

tmikolov@google.com kaichen@google.com

Greg Corrado Jeffrey Dean
Google Inc., Mountain View, CA Google Inc., Mountain View, CA

gcorrado@google.com jefflgoogle.com

Everybody knows whom to credit

-

v T very large sets of labeled training data. To alle-
The second system in each ensemble was a system

viate this problem, we use pre-trained continuous

based on word embeddings (Mikolov et al., 2013). word embeddings (Mikolov et al., 2013) as input
T © ’ - ; i embeddings rather than the one-hot word encodings.
alent questions. The proposed CNN first trgns. (Kanerva et al., 2000), and (3) word embeddings

forms words into word embeddings (Mikolov et £ .
om neural language models, such as skip-gram
al., 2013), using a large collection of unlabeled guag 4 p-gr

data, and then applies a convolutional network to word embeddings (Mikolov et al., 2013).

build distributed vector representations for pairs of Given a list of seed words, resources such as Word-
questions. Finally, it scores the questions using Net, word embeddings (Mikolov et al., 2013) and
paraphrase databases (e.g., PPDB (Ganitkevitch et
al., 2013)) can be utilized to find semantically simi-
lar words and phrases.

of texts. At present, Neural Network is one of
the most used learning techniques for gene-
rating word embeddings (Mikolov and Dean,

2013) The esserntial a,ssumption of this mo & Bengio, ;2014; Luo'ng ei al., 2015), efﬁéient distributed

vectorspace word embeddings (Mikolov et al., 2013),

We propose the following compromise: the input and output parameter matrices W,
and Wy, can be thought of as real-valued embeddings, akin to latent factors in matrix
factorization models (Koren et al., 2009) or word embeddings (Mikolov et al., 2013). With 3

GloVe: Global Vectors for Word Representation

B th th e N Jeffrey Pennington, Richard Socher, Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305

suggested in Kiros et al. (2015). We use GloVe vectors (Pennington et al., 2014) as pre-

End-to-End Neural Module Networks We use trained word embeddings. The MC-QT model outperforms all previous methods, including
the publicly available implementation."® The the variation of Gan et al. (2016) which uses pre-trained word embeddings.

model parameters used for NLVR2 are the same

as those used for the original experiments on The Word2Vec word embedding made available by Google '

VOA. [SSmONoRwam of sizc 300 to em- is trained on Google News dataset. Since our datasets consist

bed ds (Pennington et al., 2014). The model 8)
Hom Cemngion) Hhe mode of tweets, we use GloVe vectors specifically pre-trained on

twitter 2in this work.
In this thesis, we use GloVe vectors for word embeddings.

Here we take the same CNN architecture as before but we apply Zipf's Law to preprocess

the text before we use GloVe vectors for feature extraction. We do this in hope of only extracting

We collected 238,097 historical diplomatic documents that span from 1860 to 1983. We
performed stratified sampling to overcome the significant variance in frequency of documents
over the year buckets. We also capped the number of documents at 5000 to smooth out the
disproportionate representation of certain years. For both models, we use GloVe vectors with
400,000 vocab size of 100 dimensions.

This was easy to do!

e The actual vectors work better

e Out-of-the-box usage is exactly the same
o Just throw away the w2v file and open up the
GloVe onel

e No need to know the ins and outs of the

algorithm
o | still teach static embeddings with the word2vec
algorithm

brillant -0.108595 -8.91585 -0.34122 -0.46488
-0.30766 0.4224 0.54478 ©.050233 -0.074818
©.56256 0.46647 ©.3628 -0.35072 0.20444 ©.090324
-1.2707 -0.48098 ©.39637 0.14639 -0.32067 -0.35
-0.49863 -0.17226 -0.17667 ©.073446 ©.90555
-0.1591 0.20531 ©.17151 ©.34148 -1.2202 0.0612
©.050296 ©.38418 -0.32608 ©.55179 ©.17156
©.26034 0.022689 -0.017267 ©.41452 -0.19447
-0.73922 -0.13019 0.084774 -1.0532 ©.39768
©.23137 0©.82867 0.32384

rhinovirus ©.42564 -0.010486 -0.10664 -0.31197
©.9388 0.41684 1.4638 -0.33614 0.6207 1.1932
©.069378 ©.53001 ©.64262 0.678 -0.4701 ©.20847
-0.4352 -0.084987 -0.57549 1 -1.0292 -0.091214
1.8561 -©.72 ©.89322 0.27471 ©.24448 0.25755
©.4183 -0.10341 -1.6764 1.1065 -0.56222 ©.042362
-0.62762 -0.23537 ©.13483 -0.69969 -0.52485
©.29966 -0.48973 -0.70865 -0.86045 1.0692
©.37511 ©.67175 ©.099384 0.63725 -0.09825
-0.82316

marciniak -©.84229 ©.22514 0.39433 -0.19872
-0.083689 0.24835 -0.12571 0.4825 ©.90827
-0.58335 0.30101 -0.11702 ©0.020311 ©.28252
-0.21729 -0.59863 -0.69338 -0.7032 0.64811
-0.55788 -0.63492 0.27522 -0.079907 0.00879145
©.49062 0.39096 0.84874 0.45208 -0.13805
-0.32136 -1.4945 ©.15928 0.46679 -0.072639
©.06353 -0.2029 -0.44887 0.79926 -0.13688
-0.30252 0.34524 0.2689 0.8492 -0.69336 ©.19409
-0.85535 ©.88239 -0.30634 ©.33366 ©.55691

What finally replaced word2vec?

e ELMo, and then BERT
e They introduced a new paradigm of contextual representation

e With performance that was impossible to ignore
o (And indeed, some predecessors were not ignored but are definitely much less well-known)

context2vec:
Learning Generic Context Embedding
with Bidirectional LSTM
Oren Melamud Jacob Goldberger Ido Dagan
Computer Science Dept. Faculty of Engineering Computer Science Dept.
Bar-Ilan University Bar-Ilan University Bar-Ilan University
melamuo@cs.biu.ac.il goldbejfeng.biu.ac.il daganf@cs.biu.ac.il

Beat them Join them

Fix them

But First, What is it that They Want?

e They want to start with embeddings
o “Don’t make me think about text”

e They want A TABLE and SOME CODE that turns TEXT into EMBEDDINGS

o “Don’t make me change the workflow”
o .tokenize()

e They want to sample from a softmax or whatever on the way out
o “text about think me make n’t Do”

Tokenization :(

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

Why can't LLM spell words? Tokenization.

Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.

Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

Why is LLM bad at simple arithmetic? Tokenization.

Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
What is this weird warning | get about a "trailing whitespace"? Tokenization.

Why the LLM break if | ask it about "SolidGoldMagikarp"? Tokenization.

Why should | prefer to usg YAML over JSON with LLMs? Tokenization.

Why is LLM not actually end-to-end language modeling? Tokenization.

What is the real root of suffering? Tokenization.

Good tokenization web app: https://tiktokenizer.vercel.app

Example string:

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

127 + 677 = 804
1275 + 6773 = 8041

For some reason,
They also want this?

ing and explaining the quirks of LLM tokenization

@ £° Youlube

JL
ar

Tokenization :(bt wh
@) ut wno cares

Tokenization is at the heart of much weirdness of L:W (writ it
write a scrip
e Why can't LLM spell words? Tokenization. /
¢ Why can't LLM do super simple string processing tasks like reversing a strin enization.
¢ Why is LLM worse at non-English languages (e.g. Japanese)? ation. €-——— not on |y (a nd not unfixa b|e)
e Why is LLM bad at simple arithmetic? Tokenization.
* Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
* Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
¢ What is this weird warning | get about a "trailing whitespace"? Tokenization.
e Why the LLM break if | ask it about "SolidGoldMagikarp"? Tokenization.
¢ Why should | prefer to usé YAML over JSON with LLMs? Tokenization.
e Why is LLM not actually end-to-end language modeling? Tokenization.

» What is the real root of suffering? Tokenization. \

pre-tokenization, actually

ok but who cares
(insane edge case)

vanilla BPE, actually

10

How many r's are there not not in "strawberry"?

/?
R i d d | e m e th iS Ah, we're going deeper now. Let's break it down carefully:
Question:
"How many r's are there not not in ‘strawberry'?"
That double "not not" cancels out — it's equivalent to just saying:
"How many r's are there in 'strawberry'?"
Answer:
In the word "strawberry"”, the letters are:
strawberry
Count the r's:
e Thereare3r's.
Final Answer:
&7 3 r's are there not not in strawberry. "

Act |: Beat Them

12

MIMICK, or How | Once Thought We Beat OOVs

QOO0 0000 o
objective
—

[B

the [0O0OOO0O0OO0)
a ©0000000
train(CO000 0000
stati(QO000000)
left [ooooooooy
city ©@0000000

=~

Pinter, Guthrie, Eisenstein.
Mimicking Word Embeddings using

Subword RNNs. EMNLP 2017 - £ 13

MIMICK

embeddings

-

\

the [©OOOOOOOO)

a (eYeYoYoXoXele)e)

train(CO000 0000

stati(00O0000 00

left ©COOOOOOO0

=

city ©@OOO0O0O00J)

/

Pinter, Guthrie, Eisenstein.
Mimicking Word Embeddings using
Subword RNNs. EMNLP 2017

QOO0 O000O0
objective
Nss (L)

© O O O O O O O Mimicked Embedding

Feedforward Layers

Backward
RNN

OO0 €00}« 0)
)))
[COP-COP-OOP| oo]/] el

T/ T/ T/ Character

([©c0oogEogLo o]] ermbeddings

14

MIMICK

Downstream model

embeddings

[O

the [0OOOO0OOO0OO
a @O0000000
train@0O000000
stati(QOO0O00000
left ©OOOOOOO
city @O000000

)
)
)
)
)
)

o y

Pinter, Guthrie, Eisenstein.
Mimicking Word Embeddings using
Subword RNNs. EMNLP 2017

© OO O OO O O] Mimicked Embedding

Feedforward Layers

Backward
RNN

o\o]([o\o]([O\ONool
)1) o
[COP-{OOP-O OB oo]/] M

A AV I

(eI [XeIee1e19)

Character
embeddings

C y t y 15

Follow-ups

e Different mimicking architectures

e Combining Mimick with large-corpus contexts

e Combining Mimick with downstream contexts

[Zhao et al. 2018]

[Schick & Schitze 2018-19]

[Garneau et al. 2018-19]

16

DETOK

GEN
Follow-ups ,
@008 (0298)
MobD
f
Tok D
(hovercrattm)
E (©0000) (60000) (©6000) (©9000) (06000) (0000)
7rt é 6 ¢ ¢
T (my) (hover)(##craft] ([MASK]) (full) (IMASK]) (eels) (-)
S , My hov\ercraft is full of eels

And Similarly

[ALL | [Away] [song]
MLM NLM
‘ Token Repr. ’ I Char Repr. |
| CharBERT |
[ewsy] [masa| [| [AL | [##iL] [A | [##wy]| [##a | [is | [a | [s | [##ng] [IsEPI]
\\\ r b\ A /4 4 A
(oLs]] [mesa] [1 | 1AL ‘[Avx‘ya| Bl |snilg " [seP)
|+i VAR ~
cLs]| [wash| [it Al A e . Word:Tieyel
I[]I I as l | l I | E e CWDXTQ) —_— E¢b — [Mq} — E¢b —> logits acters
~ Tokenizer Input Embedding = Output Embedding firoshi Noji®,
CharBERT: Character-awar: \’ J / "
H ‘rance,
Wentao Ma, Yiming Cuit, Chenglei Si s apan

fState Key Laboratory of Cognitive Inemgence, irx
Research Center for Social Computing and Informati
Harbin Institute of Technology, Harbin

$iFLYTEK AI Research (Hebei), Langfai

YUniversity of Maryland, College Park, \

Zero-Shot Tokenizer Transfer

Benjamin Minixhofer S?*) Edoardo M. Ponti (5] Ivan Vulié (%
[SEP] University of Cambridge ~ [°“1University of Edinburgh
18

And Also

Clark et al. 2022
Xue et al. 2022

e CANINE, ByT5, MambaByte .

Y Y ((oo ooy g 208
DD Pagnoni et al. 2024
e PIXEL ml Nawrot et al. 2024

Hwang et al. 2025
A like literally last week

e Byte Latent Transformers CDDD
Embed)
. el
e Dynamic Hourglass Qev][e j
e H-Net FROM TOKENS TO WORDS:
ON THE INNER LEXICON OF LLMS
® “We a|re ady beat them” Guy Kaplan, Matanel Oren, Yuval Reif, and Roy Schwartz

The Hebrew University of Jerusalem

19

Large Language Model

The Llama 4 herd: The beginning of a new era of
nhatively multimodal Al innovation

April 5,2025 - (O 12 minute read

Our new Llama 4 models are our first models that use a mixture of experts (MoE)
architecture. In MoE models, a single token activates only a fraction of the total parameters.
MoE architectures are more compute efficient for training and inference and, given a fixed
training FLOPs budget, delivers higher quality compared to a dense model.

vocab]| 0/0 ¥

... will llama 5 finally abolish tokens?

20

Act ll: Join Them

21

Tokenization is a notorious step of all language modeling pipelines (most commonly the “BPE”

algorithm [38], which I'll use interchangeably with “tokenization”), where textual data is

These questions point at the following idea: is each individual token semantically meaningful?

22

The Pipeline

dogmatism

dogmatism

v

v

dog mat ism

dogma tism

Learn contextual

embedding model
from a large corpus

Fine-tune model
parameters on
downstream task

(e.g., BPE)

dogmatism

v

dogma tism

23

The Objective

L

il

1

OETIN

| ”‘
1

\l['}' ‘

I
i
l.\ '
s‘ll

TOKENS

24

The Objective

bite
leash
bark
house ‘
food ﬁ
leash bark
bone

food
baseball
dog
hot
church faith
pope o\
EZCVE_f,T
belief LAY | RSRLEN

bun

mustard

food

25

The Objective

dogm

church
pope

belief

##ism

26

The Objective

bite
leash

bark

house
food

leash

bone

tdog

belief

food

baseball

&

mustard

food

27

SaGe - a Context-Infused Subword Vocabulary ‘

SaGe builds on any existing subword vocabulary creation method, adding a
SkipGram*-inspired objective: “Mikolov et al. 2013

For our corpus C and vocabulary V, we learn token embeddings for alltin 'V,
and maximize the overall log-probability of contexts given the tokens

v.e)=— > 3 1og(a(E” - EL)) | JOIN

tetok(C,V) c; EWy THEM

-~

Downstream code (pre-training & fine-tuning) stays exactly the same

Yehezkel and Pinter. Incorporating Context into Subword Vocabularies. EACL 2023. 8

SaGe - the Algonthm Initialize V to all possible tokens

While V is too big:

loss: +— L(V\ {t},C) — L(V,C)

Return V

hittps://github.com/MeLeLBGU/SaGe

29
D

https://github.com/MeLeLBGU/SaGe

SaGe - the Algorithm

Initialize V to large BPE-trained vocabulary

While V is too big:

Return V

30

SaGe - the Algorithm

Initialize V to large BPE-trained vocabulary

While V is too big:

Every m steps: refresh bottom set

Compute ablation loss for tokens in
current set of bottom tokens

Throw away k least lossy tokens

Return V

31

SaGe - the Algorithm

Initialize V to large BPE-trained vocabulary

While V is too big:

Every | x m steps: compute
embedding table

Every m steps: refresh bottom set

Compute ablation loss for tokens in
current set of bottom tokens

Throw away k least lossy tokens

Return V

32

Did Ambiguous Tokens Go Away?

In English BPE, the token og
emerges in various contexts

With SaGe, it is ablated due to its
ambiguity, replaced by two
possible behaviors:

(@)

Larger tokens containing it are
retained, being more contextually
salient; or

No larger tokens are frequent
enough, breaking the token down to
characters (inherently ambiguous)

_His _son _Raj ash ri _Sud h ak ar _has _p enn ed
_dial og ues _and _songs _for _some _films _that
_were _dubbed _into _Telugu .

_This _gene _is _a _pseud og ene _in _humans
—and _most _other _prim ates .

_The _St 0 og es _-work _for _Mir acle _Det ective
_Agency ,

33

Vocabulary Analysis

e SaGe tokens have fewer contexts
o (Not conditioned on frequency)

BPE
' “ 4/{ Inherently ambiguous head] = SaGe

16K

14K

10K

8

~

6

=

2|

Number of distinct neighbors in corpus
~

100
Rank

il 4_._——-[Contextually-crisp body and tail]
125“ o 150 ‘ ‘175‘ B

200
34

3500
NN BPE

Vocabulary AnalySiS 3000 mm SaGe

2500 -
e SaGe tokens have fewer contexts

o (Not conditioned on frequency)

2000 |

1500

e SaGe produces longer tokens 1000
500 1

0 6 8 10 12 14
KWe attribute this to SaGe’s ability to\ Token Length

remove tokens that are intermediate
in BPE’s vocabulary formation:

BPE the=the»the
GaGe the-+he=»the j

Vocabulary Analysis

SaGe tokens have fewer contexts
o (Not conditioned on frequency)

SaGe produces longer tokens

SaGe retains more full words, but breaks
down others into many more tokens

o N
£ =

Words in corpus
[N w H wm
= = =

Due to the inherently ambiguous
single-character tokens

=<

=<

2 3 4 5
Subwords in word

I BPE
Bl SaGe

36

7M. wem BPE
Il SaGe
. . 6M -
Vocabulary Analysis —
; i Wiki
e SaGe tokens have fewer contexts §3“"‘
2M A
o (Not conditioned on frequency) -
e SaGe produces longer tokens Y% subwordsinword
e SaGe retains more full words, but breaks 7 E—
. 6M -
down others into many more tokens N - SaGe
am 1 Legal

e Statistics are robust when testing on
different domains

Words in corpus
w
=<

N
=

-
=

1 2 3 4 5 6 17
Subwords in word 37

Downstream Evaluation

e We pretrained BERT models using BPE and SaGe in English and Turkish
e |Implementation: “24-hour academic BERT” (Izsak et al., 2021)
e Data: Wikipedia

Downstream Performance

Evaluation on English GLUE and NER (CoNLL 2003), Turkish XNLI and NER

GLUE MRPC MNLI COLA QNLI SST2 STSB QQP XNLI,,,

(F1) (Acc %) (Matt.) (Acc%) (Acc%) (Pear.) (Acc %) (Acc %)

7918 62,57 0717 66.17 80.54 |.3094 82.41 41.20

.. .8004 64.00 .0985 74.83 79.85 3387 84.23 46.46
NER English Turkish

7142

4660

102

5475

39

Conclusion

e Contextis important as far back as pre-pre-training tokenization schemes

e SaGe is a context-aware tokenizer incorporating the SkipGram objective

o Achieves better results on downstream tasks on 2 typologically-distant languages
o Both sequence and token levels

e SaGe is plug-and-play. No need to change code in LLMs, only the subword
vocabulary file

e We believe further work can improve results even further

o Extend to other languages and tasks
o Optimize the algorithm and remove some of the “fixes”

40

S u bseq ue nt WO rk Initialize V to large BPE-trained vocabulary

While V is too big:

Every | x m steps: compute
embedding table

Every m steps: refresh bottom set

Compute ablation loss for tokens in
current set of bottom tokens

Throw away k least lossy tokens

Return V

hittps://github.com/MeLeLBGU/SaGe

41

https://github.com/MeLeLBGU/SaGe

Interlude: Convince Them that It’s Better

e Downstream performance

o Which task? Even this isn’t clear, many are just evaluating bit-per-token or perplexity, etc.

e The Correlation Challenge

o When does higher intrinsic score indicate better downstream performance?

e Without good intrinsic measures, it's only beat them that can make a dent

o And even that won’t guarantee adoption

Beyond Text Compression: Evaluating Tokenizers Across Scales

Jonas F. Lotz* Anténio V. Lopes Stephan Peitz
University of Copenhagen, Denmark & Hendra Setiawan Leonardo Emili
ROCKWOOL Foundation Research Unit Apple

Multiple- S i Machine ~
E Summarization z
choice translation
COMPRESSION - 0.59** -0.09 0.77**
CARDINALITY 0.29* -0.09 - 0.79**
AUC 0.19 0.14 0.77"
POWER LAW 0.0 0.14 0.78**
SLOPE 0.0 -0.43 -0.44*
Across scales 0.33 -0.07 0.87*

42

Convince Them that It’'s Better

Pre-train Fine-tune / align

Evaluate

Convince Them that It’'s Better

Pre-train Fine-tune / align

Cognitive Evaluation of Tokenizers

not directly measurable

Easy for humans L Easy for tokenizers

l measurable
| Festprocessing Fewersubwords
Response time chunkability = 1 — riokens
#chars

!

Lisa Beinborn and Yuval Pinter. Analyzing Cognitive Plausibility of Subword Tokenization. EMNLP 2023

45

Response Time

The British Lexicon Project: Lexical
. decision data for 28,730
Higha

monosyllabic and disyllabic
English words

Emmanuel Keuleers 9, Paula Lacey, Kathleen Rastle & Marc Brysbaert

ouuv ‘o-x-ed *ca?t_y wind

Practice effects in large-scale visual word
recognition studies: a lexical decision study on
14,000 Dutch mono- and disyllabic words and
nonwords

Emmanuel Keuleers* Kevin Diependaele o Marc Brysbaert

The French Lexicon Project: Lexical decision

data for 38,840 French words and 38,840
pseudowords

Se N fo o d Ludovic Ferrand {9, Boris New, Marc Brysbaert, Emmanuel Keuleers, Patrick

*br-itk olo-om

Bonin, Alain Méot, Maria Augustinova & Christophe Pallier

SPALEX: A Spanish Lexical Decision Database From a
Massive Online Data Collection

L IIIP I @ 0se Armando Aguasvivas® {8 Manuel Carreiras Qmmwmm Pawet Mandera
g mmanuetKeuieerst () Jon Andoni Dunabeita

Results

Words Non-Words

0.4 -
'l em
mm WPC

—0.4 A Length

Corr. Response Time
o
o
1

English Dutch French Spanish English Dutch French Spanish

WordPiece performs best, UnigramLM disappoints
(contra Bostrom & Durrett 2020, whose eval is statistics + downstream)

47

https://aclanthology.org/2020.findings-emnlp.414/

Intrinsic Eval Benchmark

(EﬂgllSh Only) Resource Reference
LADEC
Combining: MorphoLex
o Several morphological resources MorphyNet
o Cognitive data DagoBert

o Efficiency metrics UniMorph
UnBlend

CompoundPiece

Cognitive data

tokenization-scorer

Uzan, Schmidt, Tanner, Pinter. Greed is All You Need: An Evaluation of Tokenizer Inference Methods.
ACL 2024 (Outstanding Paper)

48

https://github.com/MeLeLBGU/tokenizers_intrinsic_benchmark

Bridge: Tokenization is also a Pipeline

Raw Text

This ultramodern life

Pre-tokenizati

on

Pre-tokens

This
_ultramodern
_life

-

_

. _ul
Tokenizer tr
Vocabulary 2’3
ern
_ultra
4 modern
Inference
Method
Tokenizer

N

Tokens

|~ _ultra modern

— _ul tr am od ern

_ul tr a modern

49

Act lll: Fix Them

50

Fix Them

e BPE-Dropout: occasionally forget to merge

u
u-n re-l-a-t-e-d
u-n re-l-at-e-d
u-n re-l-at-ed

un re-l-at-ed
un re-l-ated

un rel-ated

un-related
unrelated

(@

u-n_r-e-l-a_t-e_d
u-n re-l_a-t-e_d
u-n re_l-at-e_d
un re-l-at-e-d

un re_l-at-ed

un re-lat-ed

un relat_ed

(b)

[inference

u-n_r_e_l-a-t-e-d
u-n-r_e-l-at-e-d
u-n-r_e-1_at_ed
un-r-e-l-at-ed

un re-1-ated
un rel_ated

Figure 1: Segmentation process of the word ‘unrelated’ using (a) BPE, (b) BPE-dropout. Hyphens indicate possi-
ble merges (merges which are present in the merge table); merges performed at each iteration are shown in green,

dropped — in red.

BPE-Dropout: Simple and Effective Subword Regularization

Ivan Provilkov

*1,2

Dmitrii Emelianenko*!® Elena Voita*®°

51

Fix Them

PathPiece: keep the vocabulary but make inference maximally compressive

(width, opt_path_length):

(1.3

inference

(1,2 (1,4) (2,4) (1,4) (1,5) (1,5)
(12) (22) 13 23) (B3 24) (1,4 (24 (29 (1,6)
(12 (22 @2 @2 (13 3 @13 @3 @3 @3 (149 @G3 (249 @4 @49 (15 @5 (1.8
) @1 @1y @41) @22 @2 @¢2 @3 62 62 (23 (@3 @43 ¢G4 @49 64 @5 @G5 (29
"
Thie| [gluli|c|k| |blriojw|n| |[f|lo|x
Y M P e/ i/ I 8 MM R

Ue . . S
5 w L‘_/
6 k____’/

52

Fix Them [inference

e FLOTA: keep the vocabulary but find the 1o n g e st token ininference

An Embarrassingly Simple Method to Mitigate (und)(es)(ira)(ble)
Properties of Pretrained Language Model Tokenizers

Valentin Hofmann™!, Hinrich Schiitze!, Janet B. Pierrehumbert’™

“Faculty of Linguistics, University of Oxford
fDepartment of Engineering Science, University of Oxford
tCenter for Information and Language Processing, LMU Munich

53

Fix Them | voab |

e Trimmed-BPE: get rid of rare intermediate tokens post-vocab-building

token ization 9 token ization

: bt /o

! 4 / \

. A \
. ., / \

ation . i / \

: R 4 <
; it L2 ation
: gor PN R K
ion : S0 N ndec(dza) -
L R
I 2 e
on % RS = . %

/4 b\ /4 b\ /4 >\ 1 of \n Rt ~dec(ization)

BPE ; Trimmed

FiX Them [vocab

e BPE-knockout: trim post-vocab-building, with the help of morphology

Gstandaard tarief
. LA™ %
Gstand aardt anef Gstand aard arief
2 N LY / N
Gst and aar 1ef Gst and aar ief
\ /) /

EEARARE S AL AR ALY #A
ARVAVAR AL SR RLA Wi

Gstandaardtarief Gstandaardtarief

(a) BPE (b) BPE-knockout (due to knockout of the merge d+t)

BPE-knockout: Pruning Pre-existing BPE Tokenisers
with Backwards-compatible Morphological Semi-supervision

Thomas Bauwens and Pieter Delobelle

55

FiX Them [vocab

Picky-BPE: get rid of tokens during vocab-building, when it “makes sense”

would

st | @ =7 o) sweunem T8 [y,50) =
W)@ | Q0P |00 @3 O

) O O ey 3 gy R ey [T

O N0 IO O [O (0w)

Figure 2: Picky BPE tokenization example. Token frequencies are demonstrated in the corresponding circles and
are updated on merges. Token “ould” is removed only after merging into three common tokens containing it. The
corresponding oS values are visualized on every merge. Once IoS becomes greater or equal to the threshold 77, 0.9
in this example, the token “ould” is removed.

BPE Gets Picky: Efficient Vocabulary Refinement
During Tokenizer Training

Pavel Chizhov*!2? Catherine Arnett*2* Elizaveta Korotkova® Ivan P. Yamshchikov!2

fp(mla z?)

fe(z1)

56

Fix Them [pretokenization }

e Change the regular expression

"(?:[sdmt]|11l|ve|re) # English contractions such as 'm and 've

| >\p{L}+ # Optional space + one or more letters

| 2\p{N}+ # Optional space + one of more numbers

| 2[~\s\p{L}\p{N}]+ # Optional space + one or more punctuation(-ish)

| \s+(2!\S) # Whitespace not followed by non-whitespace

| \s+"""
"(?i:[sdmt]|11]|ve|re) # English contractions, same as GPT-2
| [A\r\n\p{L}\p{N}]?+\p{L}+ # single space/tab/punctuation + letters
[\p{N}{1,3} # 1-3 digits, no leading space
| 2[~\s\p{L}\p{N}]++[\r\n]* # optional space, punctuation, line breaks
[\s*[\r\n] # any whitespace ending in \r or \n
[\s+(2!\S) # any whitespace preceding a non-space
[\s+ # any whitespace

Fix Them

[pretokenization }

e Pretokens don’t control us anymore

Boundless Byte Pair Encoding;: i ELy Sl By BT ee B g W Wi e 5 g W e 1
Breaking the Pre-tokenization Barrier o b o Bl B R T R TR
Wi o N LR TR T
© T 1 T e % ey PR s e Rt
Craig W. Schmidt, Varshini Reddy & Chris Tanner* EEETTY Y Y LYY Y BV BF et DY B
Kensho Technologies 6 CC'T', 'i', 'p'], [' o', '£'1, [' the'l, [' ', 'h', 'at'l]

Cambridge, MA 02138, USA)
{craig.schmidt,varshini.bogolu,chris. tanner}@kensho.com

Yuval Pinter .
Department of Computer Science 10
Ben-Gurion University of the Negev
Beer Sheva, Israel

uvp@cs.bgu.ac.il 12

EENT™s s Speily Lol 1. [thelils: 1" “5 whis atill
EEAT®,, Yy, et dy Eraefd,, LY ithenl, [Fgnk*, “atld
ELYFY, Yty i, L pEchlsher' 1, [h';. fat'll

CEATY; "papk' 1, [V of the'd,; " W'y YaE%]]

EC'"T*, “ip’];. [* of the'l; ['Ihat)']l]

CC'EEEpd’ 1, " of the'l; " hat'd]

58

Fix Them [pretokenization }

e Pretokens don’t control us anymore

SuperBPE: Space Travel for Language Models

*Alisa Liu”® *Jonathan Hayase"
Valentin Hofmann®"Y Sewoong Oh” Noah A. Smith”? Yejin Choi®
YUniversity of Washington ANVIDIA € Allen Institute for Al

BPE: |By| the| way|,| I| am| a| fan| of| the| Milky| Way|.

SuperBPE: By the way, I am al fan of the| Milky Way.

Fix Them

EN:
UTF-8
MYTE

OS:
UTF-8
MYTE

ThH:
UTF-8

MYTE

[mughly] [at] [1 2]

(72 6F 75 67 68 6C 79) (61 74) (31 32)

(62 82 A3 93 6C 79 (61 74 (31 32)

|prv’z'blz'zvné| @] &2]

(Fo C5 99 69 62 6C 69 C5 BE 6E C4 9B) (76 65) (31 32)

(4B 84 81 53 80 96 BB 43 97) (76 65) (31 32)

[s08508(12)(34 |

GS() BO BO E0O BO B8 EO B1 81 EO BO AE E0 BO BE E0 BO BO E0 Bl 81)

(31 32) (E0 Bo B5 E0 B0 A6 E0 Bl 8D E0 B0 A6)

(67 83 B7 94 E0 B1 81 57 80 8F B4) (31 32) (57 82 9C 8B)

MYTE: Morphology-Driven Byte Encoding for Better and Fairer

Multilingual Language Modeling

Tomasz Limisiewicz'™* Terra Blevins?> Hila Gonen®
Orevaoghene Ahia’> Luke Zettlemoyer?
'Faculty of Mathematics and Physics, Charles University in Prague

2Paul G. Allen School of Computer Science and Engineering, University of Washington

Entropy of Next Tokens

8.0

6.0

40

20

0.0

8.0

6.0

40

20

[pre-pretokenization]

| by \ \/ WY 4 ‘
| / \ \/ ¥ ’
|f \ / \

i B3 {

Sample Sentence

Entropy-Driven Pre-Tokenization for Byte-Pair Encoding

Yifan Hu"' Frank Liang’' Dachuan Zhao'' Jonathan Geuter'? Varshini Reddy® Craig W. Schmidt?

Chris Tanner*

60

Fix Them

~)
SCRIPT

encoding

k
=gy

(&) ®)
ro4

block index
token token

. J

BPE Stays on SCRIPT: Structured Encoding
for Robust Multilingual Pretokenization

Sander Land! Catherine Arnett 2

[pre-pretokenization]

Character Character Character
OO OCOO | CMCCD
8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit
1 Encode (Fallback) = 3 tokens Decode 1

CHOCOCD O COCdD

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

A
1 Shift and Deduplicate =9 tokens Reconstruct
6-bit 9-bit 9-bit 9-bit 9-bit 9-bit 9-bit
=7 tokens

Bit-level BPE: Below the byte boundary

Sangwhan Moon Tatsuya Hiraoka Naoaki Okazaki
Google LLC MBZUAI
sangwhan@iki. fi tatsuya.hiraoka@mbzuai.ac.aeokazaki@c.titech.ac. jp

Institute of Science Tokyo

61

FiX Them: Sem|t|C ant [pre-pretokenization]

Existing segmentation methods assume concatenative text

Hebrew, Arabic, Malay, Georgian (and others) don’t follow this rule

sy e Tkemeer ——— 1105 5|

62

FiX Them: Sem|t|c ant [pre-pretokenization 1

e Existing segmentation methods assume concatenative text
e Hebrew, Arabic, Malay, Georgian (and others) don’t follow this rule

e We propose Splinter, a learned pre-processing step that re-linearizes the text
into concatenative morphemes

mokener a1 (15 T b <0 T ny b
e

Splinter - Evaluation

e We can’t even evaluate with morphological

, , Reading Time Correlation
data (which assumes concatenative

@ BPE W Splinter

morphology)
02
e And so: 0
0.0
-0.1
02

Words Non-words

HelLP: The Hebrew Lexicon project

Roni Stein, Ram Frost & Noam Siegelman

64

Splinter - Evaluation

e But we can evaluate downstream:

40
Error rate (%)
B BPE B Splinter
30
20
10 / (This is a 20% difference)
0

QA Syntax Segmentation 65

Where Do We Go From Here

| think we can put our eggs in more than one basket

| think “model conservatism” has its advantages « we need more “join them”

| think we need to look everywhere for more evaluation opportunities

| think we can talk about this!

(@)

(@)

(@)

Me.rge with us

TokShop

Token ##ization Discord server
Applied Sciences Special Issue on
Atomic Respresentations

The Token ##ization
Discord

66

| Can Talk About Tokenization Forever

e TJoolkits

e [s tokenization still “underexplored”?

e Dealing with auxiliary problems builds a healthy ecosystem that fosters

long-lived lines of research
o Formal properties of tokenizers
o Scaling laws and training limits

e And more!

e Catch me anytime today or snipe me at the 15:30 panel
67
D

Medkd

Machines
Learning
Language

:
= -
"«
g &€&

Funding:

Thank you!

vuvalpinter.com

uvp@cs.bqu.ac.il

Machines
Learning
Language

MEdEL

69

http://yuvalpinter.com
mailto:uvp@cs.bgu.ac.il

- beat them: pixels, bytes, canines

- (the bpe strawman)
- fix them (i can fix him meme): dropout, pathpiece, picky, superwords

- fixing way down in the plumbing: myte, script, splinter & hu-etal-entropy (if you care about a language show it)
- join them: sage, bytespan, splinter (?), zett (?), anything plug-and-play that can lock into existing code pipelines
- loose threads of lines of work (encoding, pretok, vocab, inf, eval, multiling, downstream effects [real tasks and charbench stuff]) not all coming together

- the diacritics thing wrt pretok - kyle and moi

- ppl are still not doing vocab algos at all - are sage and bytespan really the only novel (unsupervised) ones since unigramim?
- bpe's ever-present hidden tokens problem (knockout, trimmed, picky, etc.) and the various ramifications such as the min token counts rising (see chart from craig in screenshot)
- bytes, encoding, characters, a rabbit hole beyond us
- my maxim of "these things have to make sense for language -> make sense for (L)LMs -> make sense for contextual understanding"
- zoom-out science vs. zoom-in
- are we still "underexplored"?
- arguments we need to push back on

- "everything gets fixed in the transformer layers"

- Roy S's paper (full-word representations exist in the transformer layers)

- the evaluation crisis?

- the bottom-up (bpe) vs. top-down (unigram) debate

- quality vs. efficiency? BPC vs/ fertility? what about morph, cog?

- (bytespan found a coverage "bug" in our morpho benchmark impl, p.6)
- the strawberry fixation? (this isn't it + charbench) the magikarp thing?
- what pretokenization gives us

- and what superwords don't solve in a theoretical sense, turning the elephant in the room to a capybara in the room

- can be framed as "no-pretok has two main disadvantages: inefficiency and empirical suckiness; superwords avoid the latter without totally relaxing the former"

- the spooky magic of (tokenization) inference
- (latter two-related) maybe a map of all the NLP pipeline with where tokenization happens and has effects? like a pre-embedding continent, then the bias stuff affecting
downstream, multilingual rivers, etc. <- this might work (also?) better for the Sl paper.

?
...110n7 0

The Hot Takes for Today

e “How many r’s are in strawberry” is not interesting. Use a script.

Al

Leftovers (?)

e |s tokenization still “underexplored”?
o Does everything really “sort itself out” in the transformer layers?
m Yes and no: Schwartz, empirical evidence, but also off-domain, multilingual, etc.

e What do we do about everybody still using vanilla BPE?
o (Even if they rebrand it, like “TikToken” or “Neo tokenizer” or whatever)

e What are the biggest elephants in our room?
o Evaluation
o Sweeping pretokenization under the rug
o Multilingual and crosslingual
m Leadinto SPLINTER and Hu-etal-entropy (“if you care about a language, show it”)

e The fun of defining auxiliary questions [formal properties, scaling laws] « leading towards

a “mini-NLP” ecosystem that fosters long-lived lines of research
72

Language Models are Inherently Mismatched

(N

The train left
the station

N

Symbolic

N N7
X atialia
/)'“ V’A‘A\% V[‘“\V
W@

Real-valued

Vocabulary vs. Inference

Greedy Merges Likelihood
Byte Pair Encoding (BPE) Compatible
UnigramLM
Compatible Default
WordPiece
Default Compatible
SaGe
Default Compatible

Vocab

Inference
method

BPE

longest prefix
longest suffix
longest token
least tokens
det. merges
dropout merge

WordPiece

longest prefix
longest suffix
longest token
least tokens

UnigramLM

longest prefix
longest suffix
longest token
least tokens
likelihood

SaGe

longest prefix
longest suffix
longest token
least tokens

likelihood

Train Vocab using One, Infer with Another?

Resource Reference
LADEC
MorpholLex
MorphyNet
DagoBert
UniMorph
UnBlend

CompoundPiece

Cognitive data

tokenization-scorer

Uzan, Schmidt, Tanner, Pinter. Greed is All You Need: An Evaluation of Tokenizer Inference Methods.

ACL 2024 (Outstanding Paper)

75

Train Vocab using One, Infer with Another?

e The default inference method is constantly outperformed on some measure

= Default = Other

1.9445 1 ggogs

BPE - Morphological WordPiece - Cognitive UnigramLM - Rényi
Alignment Plausibility Efficiency

SaGe - Tokens Per Word

76

Train Vocab using One, Infer with Another?

The morphological gap between Unigram and BPE can be attributed mainly to

the inference method

=BPE = UnigramLM

Likelihood

Default

Byte Pair Encoding is Suboptimal for Language Model Pretraining

Kaj Bostrom and Greg Durrett

0.9222

77

Train Vocab using One, Infer with Another?

e Greedy methods are most aligned to morphology => generally a good choice

& Greedy = Likelihood & Merge Rules

LA

Inference Method
78

Downstream Eval

PathPiece: an
algorithm minimizing
the total number of

tokens in a corpus
(CTC)

Evaluation: on
Im-evaluation-harness
o 350M params
o Vocabs: 32k, 40k, 49k

Rank Vocab Constr Init Voc Pre-tok Segment

1 BPE FirstSpace

9 . Unigram FirstSpace .
15 PathPiecel n-gram FirstSpDigit PathPieceL.
16 n-gram FirstSpace

2 Likelihood
7 Unigram FirstSpace Greedy
17 PathPieceL.
3 Merge

4 BPE FirstSpace Greedy
13 PathPieceL.
5 WordPiece FirstSpace Greedy

6 BPE FirstSpace

8 n-gram FirstSpace
10 Bagie Unigram FirstSpace Gresdy
11 n-gram FirstSpDigit
12 SpaceDigit
14 PathPieceR n-gram FirstSpDigit PathPieceR
18 None

Random

50 A

Average Accuracy (%)
IS IS
()] [e-]

I
IS
L

42 A

® BPE & SaGe ® PathPiece
B WordPiece A Unigram
®
% s
of & o3 0y
> e ally
& 13‘2\;'
. $ v
0'3
’t 12
* ;'. . -
o .;)
18 17
18\" 17“
17\A

1.0

1.2 14 1.6 1.8 2.0 2.2
Corpus Token Count (CTC), in Billions

Schmidt, Reddy, Zhang, Alameddine, Uzan, Pinter, Tanner. Tokenization Is More Than Compression.

EMNLP 2024

79

2.4

More SaGel

Initialize V to large Unigram-trained vocabulary

While V is too big:

SaGe 3.0 (work in progress):
use Unigram likelihoods in loss;
support likelihood decoding

Tokenize corpus using V with likelihood

Every [steps: compute
embedding table

Compute joint ablation loss for tokens
in current set of bottom tokens

Throw away k least lossy tokens

Return V

80

Talk Overview

e Contextual Models for Tokenizers

e FEvaluating Tokenizers Intrinsically

e Decoupling Vocabulary from Inference
e More Fun with Inference

e Hebrew Tokenization

81

Here's a non-exhaustive list of reasons:

1. The HuggingFace tokenizers library has horrifically un(der)documented Python interfaces. Some classes
even accept arguments that aren't in their signature.
2.The tokenizers library is implemented in Rust and hence there is no possibility of inspecting
° implementations in any Python IDE. Have fun using your black box.
3.The tokenizers interface does not allow separating preprocessing from the actual tokenisation algorithm.
O O I S o The PreTrainedTokenizerBase class, from which the "slow" (Pythonic) PreTrainedTokenizer and
“fast" (Rustic) PreTrainedTokenizerFast classes both inherit, only declares an end-to-end
.tokenize() method (equivalent to TKTKT's .prepareAndTokenise()). The interface for these
subclasses is different enough that both lack features of the other:
= Whereas PreTrainedTokenizer doesdeclarea ._tokenize() (equivalent to TKTKT's
.tokenise()), | challenge you to find the equivalent for PreTrainedTokenizerFast . Best you'll find
. . is .backend_tokenizer.model. tokenize() , which outputs unusable objects of class
e Huggindface Tokenizers
Whereas PreTrainedTokenizerFast has fields .backend_tokenizer.pre_tokenizer and
.backend_tokenizer.normalizer (untyped of course, so you can't get autocompletion on their
T h .t | methods unless you manually assign them to a variable and annotate it yourself),
O e m O S p O p u a r PreTrainedTokenizer has . Preprocessing has to be defined inside
._tokenize() , which means you're doing two steps of preprocessing (one inside .tokenize() and

O Ab S O | u te |y h O rre n d O u S .:’:(r;i::e(.)_.tnkenize()) making this ._tokenize() no longer equivalent to TKTKT's

For PreTrainedTokenizerFast , the .backend_tokenizer.pre tokenizer and

.backend_tokenizer.normalizer fieldscanbo 4.The tokenizers.pre_tokenizers submodule has technical debt that can't be patched. Some examples:
TKTKT, meaning you always have to check if the o The mapping from Unicode codepoints to UTF-8 bytes, as first used in GPT-2, is only implemented in the
can't check if they exist with a simple if t.bac ByteLevel pretokeniser. Yet, it is concerned with more than this, since it splits on spaces and

S -t P 1 somehow that's always False . punctuation (optionally prefixed by a space) before applying the mapping. This is wrong for at least three
. e n e n C e I e C e o Also, the PreTrainedTokenizerBase interface is nof reasons:

increasing amount of raise NotImplementedError = Users of the byte mapping don't necessary want the string to be split;
F C L | b d B P E & U . rnethods need to be implemented and there's no en = |t synonymises prefixed spaces (converted to ¢) with start-of-word boundaries whilst actually all

O a St, - a S e 9 n I g ra I I I Suplemeniod: words (even those directly preceded by punctuation) should be marked with such a boundary;

= |t assumes that such boundaries should always be at the start of a word.

0] Ve ry hard to extend or debu g o The GPT-2 convention of having a word boundary at the start of (almost) all words is hardcoded
throughout transformers and tokenizers (with options that commonly look like add_prefix_space)
even though the original BPE paper used word boundaries at the end of words (</w>). Only supporting
the start-of-word convention is bad because this deteriorates downstream performance for e.g. Germanic
languages, where a compound has its head at the end and hence it should be allowed to tokenise the

. head with the exact same tokens as it would be if it was isolated.

. | I kt O k e n o There is literally a normaliser class called Precompiled which is just one big object stored in base64 in
——————————— the tokeniser config JSON. No access to it in Python, no interface, no description of what it does. A black
box. Probably a holdover from adapting the sentencepiece package to HuggingFace, yet TKTKT doesn't

O For OpenAI S mOdels 5.Didyizt:\:::::meirRoBERTaBPEimplementation
o Only Vanilla BPE (?!?

) unless the merge file is preceded by a #version tag? This doesn't conform to , and almost

cost me a paper.

6. In the little documentation that does exist (e.g. for WordPiece and KudoPiece), there are so many theoretical
inaccuracies that we shouldn't even have confidence in anything that isn't a BPE tokeniser implemented by
them. Their , an algorithm which itself was already poorly explained originally, is
mathematically absurd.

7. They offer very few core models (basically only BPE and KudoPiece, which already offers and
keeps much more updated) whilst there exist many more in the literature, and the likelihood that someone who
knows the literature comes along to implement all of them in C++ is rather low.

https://huggingface.co/docs/tokenizers/en/index
https://github.com/google/sentencepiece
https://github.com/openai/tiktoken

Please Try

e TKTKT (“Tokenizers toolkit”)
e Supports all the tokenizers and methods | described today

e Separates pre-processing, vocab building, and inference

TKTKT

A collection of Pythonic subword tokenisers and text preprocessing tools, with full backwards- and forwards-
compatibility with HuggingFace tokenizers !

83

https://github.com/bauwenst/TkTkT

LIFE IN 2013

=

&
-
i :
= # 3
e W
D {
b & |

2024: Craig W. Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval Pinter, Chris Tanner. Tokenization Is More Than
Compression. EMNLP. Preprint.

2024: Marco Cognetta, Tatsuya Hiraoka, Naoaki Okazaki, Rico Sennrich, Yuval Pinter. An Analysis of BPE Vocabulary Trimming in Neural
Machine Translation. Insights on Negative Results in NLP. Abstract. Preprint.

2024: Omri Uzan, Craig W. Schmidt, Chris Tanner, Yuval Pinter. Greed is All You Need: An Evaluation of Tokenizer Inference Methods. ¥
Outstanding paper at ACL. PDF. Intrinsic tokenizer benchmark.

2024: Khuyagbaatar Batsuren et al.. Evaluating Subword Tokenization: Alien Subword Composition and OOV Generalization Challenge.
Preprint.

2024: Anaelia Ovalle et al.. Tokenization Matters: Navigating Data-Scarce Tokenization for Gender Inclusive Language Technologies.
Findings of NAACL. PDF.

2023: Lisa Beinborn and Yuval Pinter. Analyzing Cognitive Plausibility of Subword Tokenization. EMNLP. PDF. Code.

2023: Shaked Yehezkel and Yuval Pinter. Incorporating Context into Subword Vocabularies. EACL. PDF. Code. Video.

2022: Cassandra L. Jacobs and Yuval Pinter. Lost in Space Marking. Preprint.

2021: Yuval Pinter. Integrating Approaches to Word Representation. Preprint. This is an edited version of my dissertation introduction.
2021: Yuval Pinter, Amanda Stent, Mark Dredze, Jacob Eisenstein. Learning to Look Inside: Augmenting Token-Based Encoders with
Character-Level Information. Preprint.

2020: Yuval Pinter, Cassandra L. Jacobs, Max Bittker. NYTWIT: A Dataset of Novel Words in the New York Times. COLING. PDF. Data.
2020: Yuval Pinter, Cassandra L. Jacobs, Jacob Eisenstein. Will it Unblend?. Findings of EMNLP. PDF. Video (lay audience). Handout (linguist
audience). Also presented at SCilL 2021.

2019: Nicolas Garneau, Jean-Samuel Leboeuf, Yuval Pinter, Luc Lamontagne. Attending Form and Context to Generate Specialized
Out-of-Vocabulary Words Representations. Preprint.

2019: Yuval Pinter, Marc Marone, Jacob Eisenstein. Character Eyes: Seeing Language through Character-Level Taggers. Blackbox NLP

Workshop. PDF. Slides. Code. In June 2019 | gave a talk about this project at CUNY, as well as a (different) talk in December 2019 - February 2020
at Amazon Research, at the Tel Aviv University Machine Learning Seminar, and at AISC (video). Slides from the academic venues available upon
request.

2017: Yuval Pinter, Robert Guthrie, Jacob Eisenstein. Mimicking Word Embeddings using Subword RNNs. Proceedings of EMNLP. PDF. Blog
post. Talk. Slides. Code.

https://arxiv.org/abs/2402.18376
https://aclanthology.org/2024.insights-1.7/
https://arxiv.org/abs/2404.00397
https://aclanthology.org/2024.acl-short.73/
https://github.com/MeLeLBGU/tokenizers_intrinsic_benchmark
https://arxiv.org/abs/2404.13292
https://aclanthology.org/2024.findings-naacl.113/
https://aclanthology.org/2023.emnlp-main.272/
https://github.com/clap-lab/cogtok
https://aclanthology.org/2023.eacl-main.45/
https://github.com/MeLeLBGU/SaGe
https://underline.io/lecture/71493-incorporating-context-into-subword-vocabularies
https://arxiv.org/abs/2208.01561
https://arxiv.org/abs/2109.04876
https://arxiv.org/abs/2108.00391
https://www.aclweb.org/anthology/2020.coling-main.572/
https://github.com/yuvalpinter/nytwit
https://www.aclweb.org/anthology/2020.findings-emnlp.138/
https://www.youtube.com/watch?v=Mgih0I0rJaA
https://www.cs.bgu.ac.il/~pintery/materials/Ling_colloq-revised-221130.pdf
https://www.cs.bgu.ac.il/~pintery/materials/Ling_colloq-revised-221130.pdf
https://arxiv.org/abs/1912.06876
https://www.aclweb.org/anthology/W19-4811
https://www.cs.bgu.ac.il/~pintery/papers/blackboxnlp-char_eyes-slides.pdf
https://github.com/ruyimarone/character-eyes
http://www.cs.tau.ac.il/~gamir/ml_seminar/index.html
https://aisc.ai.science/
https://www.youtube.com/watch?v=KokBC8zBEWE
http://aclweb.org/anthology/D/D17/D17-1010
https://mlatgt.blog/2018/03/18/learning-to-represent-words-by-how-theyre-spelled/
https://mlatgt.blog/2018/03/18/learning-to-represent-words-by-how-theyre-spelled/
https://vimeo.com/238234299
https://www.cs.bgu.ac.il/~pintery/papers/EMNLP-2017-yuvalpinter.pdf
http://www.github.com/yuvalpinter/mimick

Talk Overview

e Contextual Models for Tokenizers
o V SaGe

e FEvaluating Tokenizers Intrinsically
oV (Beinborn)
o V (Greed pl)
o (Huygaa?)

e Decoupling Vocabulary from Inference
o V (Greed p2)
oV (Pathpiece)
o V (Cognetta) [and list the other ones]

e More Fun with Inference

86

Representing Language

[[The][likely}[winners][of]fthe Academy Awards] [just][left]. }

87

Representing Language

{[The][likely}[winner]@[of]fthe Academy Awards] [just][left]. J

Subword modeling

88

Representing Language

[The][like [winne r]@[of]fthe Academy Awa rds] [j ust][left].

Subword modeling

89

Representing Language

[The}[like@ [winne r]@[of]fthe Academy Awa rds] [j ust]&e%ﬂ.
leave

Subword modeling

90

Representing Language

[The][like [winner]@[of]fthe Academy Awards] [just]&e%ﬂ.
/ leave

Contextual representations /

The queen was

91

Representing Language

[The}[like@ [winne r][s][of][the Academy Awa rds] [we re][test@

| [eoronavirus)

Out-of-vocabulary
terms (OOV)

92

But This is Mostly about BPE (Byte-Pair Encoding)

e BPE is one algorithm for tokenization, it’s bottom up: merge the most frequent

token-pair into a new token, iteratively token t
e WordPiece is mostly the same .\
e UnigramLM is top-down, retaining tokens i /0\ /0\ /0\ /7\

that have a high “likelihood” across the training corpus
o When a model is claimed to use “sentencepiece tokenization”, it usually means this

e This 2020 paper argues UnigramLM is better than BPE:

Byte Pair Encoding is Suboptimal for Language Model Pretraining

Kaj Bostrom and Greg Durrett 93

The Static Embeddings Pipeline

Pre-train a model over Use model artifacts in

a large corpus downstream task
(“unlabeled”) (“labeled”)

O

the ©000000J
a (6000060609
train ©O0000GY
statif@ 0000009
left @OOCOCOO0OCJ
city 00000009

-

train |
left the
station. T

The Free Encyclopedia

AT

WWW
{r

Integrating the Character Level into Subwords

Learn contextual Fine-tune model
embedding model parameters on
from a large corpus downstream task

csssgess More learning, with
- both tokenization
g~ strategies

Backward
0u<<oo<{oo<o \ e

T =

embeddings

95

Talk Overview

e Contextual Models for Tokenizers

e FEvaluating Tokenizers Intrinsically

e Decoupling Vocabulary from Inference
e More Fun with Inference

e Hebrew Tokenization

96

Everything’s Worse in “*“Hebrew™*"

GPT-40 & GPT-40 mini G GPT-40 & GPT-4omini GPT-35& GPT-4 GPT-3 (Legacy)
(r

1NTR10 [IU77 NTERN 7w 0102 N¥n X Dl'n.l
SO

Clear Show example Clear Show example
Tokens Characters Tokens Characters

4 6 16 36

07 nni'i‘;‘ 70T IR 20X 2301 YW RITRRT Yhwn.
97

