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Fig. 1. Proposed framework: coreset selection + adaptive model compression.
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Introduction

Background: Land cover classification using satellite imagery is vital for
environmental monitoring and urban planning. Deployment of deep learning
models on edge devices faces memory and compute limitations.

Key Insight: We present an efficient framework reducing training data and
model size while maintaining >92% accuracy.

Challenges:

e Limited generalization across diverse sensors and environments.
e High resource demands prevent edge deployment.

e Efficiency in both training and inference is essential.

Contributions

e Unified framework combining coreset selection and adaptive model com-
pression.

e Achieved competitive accuracy with reduced training data and model
size.

e Highlight: 98.10% Accuracy with 9x Compression Ratio on UC
Merced.

e Over 92% accuracy with up to 6x model size reduction using 10%
training data.

Method and Mathematical Framework

Our framework optimizes both coreset selection and model compression.

Coreset Selection: Given dataset D, select subset C of size a € (0, 1]
such that L(C) = L(D).

e Random: Ciindgom = {(%4,9i) }ics, |S| = alV.

o Forgetting-based: Cioget = {(zi,vi) | fi € Top-M}, fi =
+# forget events.

e Margin-based: m; = pz(-l) —p,gz), Coargin = {(z5,u:) | my €

Bottom-M }.

Model Compression: Minimize model size while maintaining accuracy:
0= Q(P(9))

e Pruning:t M, ={weW,;||w <7}, weM;=w=N0.

e Quantization: w; = clip (round (%) . Qmin » qmaX) WAY

e Adaptive: Layer-wise pruning and quantization guided by importance
metrics.

Datasets and Experimental Setup

e Datasets:
— EuroSAT: 27K RGB images, 10 classes, 64 x 64.
— UC Merced: 2.1K images, 21 classes, 256 x 256.

e Models: ConvNeXt-Tiny (28M), Swin-Tiny (28M), EfficientNetV2-S (24M),
RegNetY-3.2GF (27M).

e Training Setup: Batch size: 64, epochs: 10, Optimizer: AdamW, LR: 0.0005,
Loss: cross-entropy with class weights.

e Coreset Fractions: 100%, 10%, 5%.

e Compression Methods:
— Pruning: fixed (k € {1.5,1.0,0.5,0.25,0}), Adaptive Pruning (LAP).
— Quantization: fixed-bit (8, 4, 2, 1), Adaptive Quantization (LAQ).

e Metrics: Accuracy, Compression Ratio (CR).

Results and Analysis

We present a comprehensive evaluation of our framework across datasets,
coreset selection strategies, and compression settings
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Fig. 2. Accuracy vs. coreset fraction.
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Fig. 3. Accuracy vs. Compression Ratio (ConvNeXt-Tiny, UC Merced).

Key Results: 99.5
e Forgetting-based coreset: 99.0

— 96.46% (EUI’OSAT, 10%) 98.5

— 88.81% (UC Merced, 10%)
e Margin-based coreset:

— 94.09% (EuroSAT, 5%)

— 78.33% (UC Merced, 5%)
e Adaptive compression: s6.0

— 98.10% accuracy, 9x CR (UC Comprassion Ratio (CR)

Merced) . . L

o Better trade-off vs. SwinV2-Tiny Fig. 4. Comparison with existing models

baseline [3]. on UC Merced.
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Conclusions

Coreset selection minimizes training data with <5% accuracy drop.
Adaptive compression balances size reduction and performance.
Enables efficient land cover classification on resource-constrained devices.

Highlight: 98.10% Accuracy with 9x CR.

Future Work:
e Joint coreset-compression optimization for edge devices.
e Integration of multi-modal data (optical + SAR).
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