
Deploying User-Friendly Software:

Six Recommendations to Make Single-Cell Foundation Models

More Usable For Scientific Discovery

Izumi Ando , Hassaan Maan , Kieran R. Campbell
*Jointly supervised this work, 1: Lunenfeld-Tanenbaum Research Institute at Sinai Health, 2: Department of Computer Science at the University of Toronto, 3: Peter Munk

Cardiac Centre at University Health Network, 4: Vector Institute, 5: Department of Medical Biophysics at the University of Toronto, 6: Department of Molecular Genetics at
the University of Toronto, 7: Department of Statistical Sciences at the University of Toronto, 8: Ontario Institute for Cancer Research

1 2 * 3 4 5 * 1 2 4 6 7 8

TL;DR Common Pitfalls

6
RECS

1 - Deploying the
model in a container

2 - Deploying the
model as a Python

package

4 - Setting up a forum
for dependency

issues

5 - Explicitly listing
compute resource

requirements

6 - Including
comprehensive

standalone
documentation

3 - Continuous
integration of

foundation model
software

� Problem:�
� Most single-cell foundation models are not

developed using industry standard software
development practices�

� Many are difficult to use, sometimes even not
installable�

� Why we should care�
� Users cannot use these foundation models to

further scientific discovery�
� Leads to wasted time, computational resources,

and work�
� What we (developers) should do:�

� Aim to implement the 6 recommendations below
when deploying foundation models.

Table 1: Implementation of typical best practices in
single-cell foundation model software (as of May
2025). This data serves as our rationale for our
recommendations.

1

2

3

4

5

6

Efforts Addressing Software Issues in Computational Biology
Proposal: Centralized Software Maintenance

Essential Open Source Software for Science

Grant by the Chan Zuckerberg Initiative to fund initiatives to make open source
software more sustainable.

Helical AI

Python package that wraps biological foundation models in a
uniform interface.

Garden

A platform that hosts AI models in a containerized environment to
allow researchers to run them within a limited GPU allowance.

Code Ocean

Platform that hosts a wide range of bioinformatics software in a
ready to use state.

Grants

Services

Current Existing Solutions

An organization solely dedicated to the maintenance of
important software could could be a sustainable solution
to keep academic software usable without disrupting the
established norms and incentives in academia. Potential
funding sources include grants and affordable fees
collected from journals/labs/users.

� Automating the
implementation of the 6
recommendations using
LLMs.

� Collecting feedback from
foundation model users
and developers on the
recommendations.

� Creating a website to
guide new developers
trying to implement the
recommendations, and to
showcase successful
implementations.

� Documentation should have high
code coverage.

� List minimum requirements for memory,
number of GPUs, number of CPUs allocated
per task, and time allowance needed to
successfully run the foundation model.

� A low effort solution for models that
are neither containerized nor
wrapped as a Python package.

� Make sure only safe changes are
being deployed as the software gets
updated over time.

� Improves user experience of installing
foundation models.

� Removes need for users to resolve
dependency conflicts�

� Useful for models used in context
with multiple programming languages.

Impact / Further Implementation Suggestions

 insufficient
requirements.txt
installation set up

 unresolvable dependency
conflicts

 inactive maintenance

 ambiguous compute
resource requirements

 lack of documentation

Future Directions

References
Szałata, A., Hrovatin, K., Becker, S., Tejada-Lapuerta, A., Cui, H., Wang, B., & Theis, F. J. (2024). Transformers in single-cell omics: A review and new perspectives. Nature Methods, 21(8), 1430–1443. https://doi.org/10.1038/
s41592-024-02353-z

Ziemann, M., Poulain, P., & Bora, A. (2023). The five pillars of computational reproducibility: Bioinformatics and beyond. Briefings in Bioinformatics, 24(6), bbad375. https://doi.org/10.1093/bib/bbad375

Link to Paper

https://doi.org/10.1038/s41592-024-02353-z
https://doi.org/10.1038/s41592-024-02353-z
https://doi.org/10.1093/bib/bbad375

