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Motivation Example

Adapting models at test
time to new distribu-
tions is still a funda-
mental challenge, espe-
cially when the distribu-
tion shifts are caused by
unobserved confounded
variables. An example
is the data source plat-
form (unobserved) may
spurious correlated to
the sentiment label dur-
ing and this correlation
maybe change at test
time.

Negative: Amazon         Positive: Yelp

Amazon

Charing time is way
too long.
...

It takes too long to
boot up.

Yelp

Waiting time was
ridiculously long.
...

Line in order was
too long.

Yelp

The place has long
standing reputation
...

I appreciated the
long menu.

Positive: Amazon         Negative: Yelp

Amazon

The long battery life
is great.
...

The long warranty is
fantastic.

Fig. 1: Sentiment is associated with data source: Amazon with positive sentiment

and Yelp with negative sentiment, which reverts in test regime.

Problem

• Can be formulated as a domain generalization problem. But often lack of
clear definition on what to generalize from training data alone.

• Supervised fine-tuning surely fail, what else can we do to learn meaningful
causal structures. How do we construct a causally robust predictor to au-
tomatically generalize to test time distribution?

• We formulate fine-tuning from pre-trained models as causal identification
problem.

Literature

• Distribution shift is an ill-posed problem without assumptions [2]. Central
assumptions on which part of data generative process is invariant, which can
be answered with tools from causal transportability theory [5, 3].

• Most common assumptions on either covariate shift or label shift, later extend
to causal motivated robust representation learning, i.e. learning an invariant
Φ(X). Based on either multiple environments (e.g. IRM [1]) or counterfactual
augmentation [4].

• Recent focus on causal representation learning methods such as learning
stable causal latent variable [6], invariant predictor [7] and compositional
models [9].

• Often requires multiple intervention data regimes or environment labels,
which can be impractical. Our work build on compositional models approach
and try to identify useful components under standard supervised learning
setup, such that these components can adjust for test time adaptation.

Problem Statement

Given: Text X and Label Y with unobserved
confounded variable U , where σ denotes the
data generation regime. During training and
test, the σ change indicating p(U) change ar-
bitrarily. The goal is to learn a classifier that
are able to adapt to the changes.

Fig. 2: Causal diagram for the problem.

Structural Assumptions
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Fig. 3: Refinement of the original causal diagram, where X is broken apart and abstracted into vectors R0, R1 and Φ.

Theorem 0.1 (Identification for Causal Features C). Assume the structural assumptions
encoded in the causal graph in Fig. 3. Let the mapping between {S0, S1, C} and {R0, R1,Φ}
obey the invertibility conditions of [8]. According to Theorem 4.4 in [8], we can identify C by
learning the distribution p(c | r) from R0 and R1.

Intuition: We can identify the invariant latent variable when having access to more than
one view of same stable variable with different generative process induced by none-stable
variable.

Theorem 0.2 (Identification for Causal Transfer Learning). Given the assumptions in the
causal graph in Fig. 3 and Theorem 0.1, the distribution of Y under do(x) can be computed
as1

p(y | do(x)) =
∑
Φ′,x′

p(y | Φ′, c)p(Φ′ | x′)p(x′), (1)

where c is given by c = p(c|r1) and r1 = p(r1|x). □

Intuition: We can perform causal fine-tuning by marginalization over the possible (but never
observed in observational data) spurious distribution over the entire dataset.
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Fig. 4: Illustration for causal fine-tuning method.

Submodule 1: Supervised Fine-Tuning The first submodule learns p(r1 | x) from training sam-
ples of p(x, y) through supervised fine-tuning (SFT) where p(r1 | x) is initialized with the
pre-trained model p(r0 | x).

Submodule 2: Learning Causal Feature To learn the invariant causal feature C, we aim to
identify the distribution p(c | r). This process involves aligning representations from different
environments while maximizing entropy to prevent collapsed representations [8].

Submodule 3: Retrieving Local Feature Given input X as a series of tokens X = [t1, t2, ..., tm],
we can retrieve the vector representation for each token t at the embedding layers from the
SFT model. To construct local feature Φ, we divide the token sequence into non-overlapping
patches, allowing us to rewrite X as patches X = [p1, p2, ..., p10] where p1 = [t1, t2, ..., tm

10
]

and so on. After splitting, we perform mean averaging on these patches to extract the local
feature Φ, which is then used with C together to estimate p(y | do(x)).

Experiments

Data: 1. Semi-synthetic data: spurious correlation between stop words and
label. and 2. Semi-synthetic data: spurious correlation between data source
and label.
CFT Models: 1. CFT: proposed model. 2. CFT-N, CFT-C, CFT-Φ: ablation
model.
Baselines: SFT0 and SFT.

Results

Train F1 90% ID F1 90% OOD F1 70% OOD F1 50% OOD F1 30% OOD F1 10%
SFT0 86.24 86.42 71.58 56.82 42.04 26.94
SFT 95.96 92.89 81.89 71.20 60.23 49.24
CFT 98.69 93.03 84.16 75.83 67.06 58.40
CFT-N 97.80 92.35 81.91 71.89 61.46 51.07
CFT-C 98.62 92.99 84.07 75.51 66.62 57.75
CFT-Φ 92.42 89.30 71.83 54.41 36.91 19.08

Fig. 5: Main experimental results, averaged over five different seeds.

Fig. 6: Box-plot over 5 runs for 4 methods (SFT, CFT, CFT-N and CFT-C). Some methods are not included as they

are significantly worse.

Conclusion

1. The results show the superiority of our model against strong baselines. 2. We
also observed that the structural assumptions are critical for latent confounded
shift and robust test time adaptation. 3. We show that pre-trained models can
be utilized to train causal classifiers.
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