Resampling Augmentation for Time Series Contrastive Learning: Application to Remote Sensing

Antoine Saget (antoine.saget@unistra.fr), Baptiste Lafabregue Antoine Cornuéjols, Pierre Gançarski

July 19th, 2025

Data: pixel-wise remote sensing (S2) time series Application: cropland classification

Abundant data, few labels

Context - Abundant data, scarce labels

In remote-sensing time series:

- Worlwide acquisition every 5 days since 2017 by Sentinel-2
 ⇒ virtually "unlimited" unlabeled data
- Expert annotations are costly
 ⇒ few labeled samples in comparison

Resampling augmentation

Self-Supervised Learning: leveraging unlabeled data

- Self-Supervised Learning: learn a representation without lahels
- Mask Modeling: predict a masked portion of a sample from the remaining visible part (e.g. Masked Autoencoders, ViT, BERT, GPT)
- Contrastive learning: brings similar samples —created through augmentations— closer in the embedding space

Contrastive learning with SimCLR [Chen et al., 2020]¹

¹Chen, T. et al. (2020). A simple framework for contrastive learning of visual representations. ICML.

Contrastive SSL is challenging for time series

Diversity in time series dataset makes it hard to design universal, effective augmentations for contrastive learning [Liu et al., 2024]²

²Liu. Z. et al. (2024). Guidelines for Augmentation Selection in Contrastive Learning for Time Series Classification, arXiv:2407.09336.

Resampling augmentation

Contribution: Remote Senging Time Series Augmentation

We propose a simple augmentation that resamples a time series into two sub-series

Resampling - 1. Upsampling

Resampling - 2. Subsampling

Resampling - 3. Optional alignement back to original size

Results - Test accuracy on FranceCrops [Saget et al., 2024]³

 $^{^3}$ Saget, A. et al. (2024). Learning from few labeled time series with segment-based self-supervised learning: application to remote-sensing. SPAICE2024.

Conclusion

Context - Abundant data, scarce labels

⇒ Contrastive learning is a powerful tool to leverage large amounts of unlabeled data, if we adapt it appropriately.

Future directions:

- Evaluate this augmentation under standard supervised training
- Test on other domains: what are the limits?
- Explore generative / mask-based SSL methods
- Incorporate spatial information

