Resampling Augmentation for

Time Series Contrastive Learning:
Application to Remote Sensing

Antoine Saget (antoine.sagetQunistra.fr), Baptiste Lafabregue
Antoine Cornuéjols, Pierre Gancarski

July 19th, 2025

@ o ICML

International Conference
On Machine Learning

SCU3E  [eniveiell] ©
i Teesvmts] anr

ICML Terrabytes Workshop 2025 1/12




Context - Abundant data, scarce labels
®0

Data: pixel-wise remote sensing (S2) time series
Application: cropland classification
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Context - Abundant data, scarce labels
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Abundant data, few labels

In remote-sensing time series:

¢ Worlwide acquisition every 5 days since 2017 by Sentinel-2
= virtually "unlimited” unlabeled data

e Expert annotations are costly
= few labeled samples in comparison
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Self-Supervised Learning
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Self-Supervised Learning: leveraging unlabeled data

 Self-Supervised Learning: learn a representation without
labels

¢ Mask Modeling: predict a masked portion of a sample from
the remaining visible part (e.g. Masked Autoencoders, ViT,
BERT, GPT)

e Contrastive learning: brings similar samples —created
through augmentations— closer in the embedding space
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Self-Supervised Learning
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Contrastive learning with SimCLR [Chen et al., 2020]"
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IChen, T. et al. (2020). A simple framework for contrastive learning of visual representations. ICML.
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Self-Supervised Learning
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Contrastive SSL is challenging for time series

Diversity in time series dataset makes it hard to
design universal, effective augmentations for
contrastive learning [Liu et al., 2024]?

2Liu, Z. et al. (2024). Guidelines for Augmentation Selection in Contrastive Learning for Time Series
Classification. arXiv:2407.09336.
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Resampling augmentation
[ eJele]

Contribution: Remote Senging Time Series Augmentation

We propose a simple augmentation that resamples a
time series into two sub-series
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Resampling augmentation
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Resampling - 1. Upsampling

(a) Original time serie
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(b) Upsampled time serie
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Resampling augmentation
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Resampling - 2. Subsampling
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(a) Upsampled time serie
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(b) Subsampled time series
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Resampling augmentation
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Resampling - 3. Optional alignement back to original size
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(a) Subsampled time series
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(b) Interpolated and aligned time series
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Results
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Results - Test accuracy on FranceCrops [Saget et al., 2024]3

T T T T T
—e
80 [ j |
*5x fewer-samples, same performance===#
§ 0 //" / |
é —e— Resampling
3 60 Masking |
——  Resizing
90 2 ——  Jittering
—— Raw Features
40 | | | | T
510 20 50 100

N samples per class in supervised downstream task training set

3Saget, A. et al. (2024). Learning from few labeled time series with segment-based self-supervised learning:
application to remote-sensing. SPAICE2024.
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Conclusion

= Contrastive learning is a powerful tool to leverage large amounts
of unlabeled data, if we adapt it appropriately.

Future directions:

e Evaluate this augmentation under standard supervised training
¢ Test on other domains: what are the limits?

 Explore generative / mask-based SSL methods

e Incorporate spatial information

(=24 ) EI’ e

'r.n. u" b | f"|
e ‘l;ﬂ"i , o
E"':-J'! % L""‘ " O )::

Results
oe

ICML Terrabytes Workshop 2025

12/12



	Context - Abundant data, scarce labels
	Self-Supervised Learning
	Resampling augmentation
	Results

