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Data: pixel-wise remote sensing (S2) time series
Application: cropland classification
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Abundant data, few labels

In remote-sensing time series:

• Worlwide acquisition every 5 days since 2017 by Sentinel-2
⇒ virtually ”unlimited” unlabeled data

• Expert annotations are costly
⇒ few labeled samples in comparison
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Self-Supervised Learning: leveraging unlabeled data

• Self-Supervised Learning: learn a representation without
labels

• Mask Modeling: predict a masked portion of a sample from
the remaining visible part (e.g. Masked Autoencoders, ViT,
BERT, GPT)

• Contrastive learning: brings similar samples —created
through augmentations— closer in the embedding space
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Contrastive learning with SimCLR [Chen et al., 2020]1











1Chen, T. et al. (2020). A simple framework for contrastive learning of visual representations. ICML.
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Contrastive SSL is challenging for time series

Diversity in time series dataset makes it hard to
design universal, effective augmentations for
contrastive learning [Liu et al., 2024]2

2Liu, Z. et al. (2024). Guidelines for Augmentation Selection in Contrastive Learning for Time Series
Classification. arXiv:2407.09336.
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Contribution: Remote Senging Time Series Augmentation

We propose a simple augmentation that resamples a
time series into two sub-series
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Resampling - 1. Upsampling
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Resampling - 2. Subsampling
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Resampling - 3. Optional alignement back to original size
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Results - Test accuracy on FranceCrops [Saget et al., 2024]3
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3Saget, A. et al. (2024). Learning from few labeled time series with segment-based self-supervised learning:
application to remote-sensing. SPAICE2024.
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Conclusion

⇒ Contrastive learning is a powerful tool to leverage large amounts
of unlabeled data, if we adapt it appropriately.

Future directions:

• Evaluate this augmentation under standard supervised training
• Test on other domains: what are the limits?
• Explore generative / mask-based SSL methods
• Incorporate spatial information
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