

Goal and Challenges

Goal

Accurate onboard cloud segmentation.

Challenges

- Traditional Algorithms rely on multispectral input
 - FOREST-2: Single thermal band available for cloud masking at time of research
- Cloud Segmentation on thermal only largely underexplored
- Deep Learning Models emerging, but rely heavily on large, well-annotated datasets
 - → minimal mission-specific data → transfer learning approach

Datasets

FOREST-2

Band LWIR-2: 10.5–12.6 µm 24 hand labelled images

→ 528 crops

Landsat-7

Band 6: 10.4 - 12.5 µm

200 pre-labelled images

→ 6000 crops

Transfer Learning Strategies

Baseline: f2-f2

Train and test only on FOREST-2

Benchmark: I7-I7

Train/test on Landsat-7

Generalisation: I7-f2

Train on Landsat-7, test on FOREST-2

Transfer: joint-f2

• Train on Landsat-7 and FOREST-2, test on FOREST-2

OroraTech

Key Results

Wölki, N. et al, Exploring Machine Learning for Cloud Segmentation in Thermal Satellite Images of the FOREST-2 mission, 2024.

Key Results

Experiment Name		Macro F1	Accuracy
Baseline	f2-f2	0.850	0.889
Benchmark	17-17	0.903	0.917
Generalisation	17-f2	0.796	0.830
Transfer	joint-f2	0.877	0.910

Onboard inference time: ~5s (2691x1762px)

Key Results

Takeaways

- Accurate cloud masking on thermal-only data is feasible
- Combining public and mission-specific data enables strong performance with minimal labelling effort
- Efficient model design + tiling strategy + GPU optimizations makes cloud masking feasible onboard
- Improve validation efforts and implement more sophisticated domain adaptation approaches in the future

