DiffusionBlocks: Blockwise Training for

Generative Models via Score-Based Diffusion

Makoto Shing, Takuya Akiba

Ours: DiffusionBlocks

Each block independently learns diffusion-based denoising for a specific range.

Background

Problem:

- ► End-to-end backprop requires storing *ALL* activations
- ► Memory bottleneck limits large-scale training accessibility

► Interpret network blocks as diffusion denoising steps!

Method

Core Framework

Interpret neural networks as reverse diffusion process:

- ▶ Input: $z_{\sigma_{\max}} \sim \mathcal{N}(0, \sigma_{\max}^2 I)$ (maximum noise)
- ▶ Output: $z_0 \sim p_{\rm data}$ (clean data)
- ▶ Block i: denoising range $\left[\sigma_{i}, \sigma_{i+1}\right]$

Training objective for block i:

$$L(\theta_i) = \mathbb{E}\left[w(\sigma) \|D_{\theta_i}(\mathbf{z}_{\sigma}, \sigma, \mathbf{x}) - \mathbf{y}\|_2^2\right],$$

where $z_{\sigma} = z_0 + \sigma \epsilon, \epsilon \sim \mathcal{N}(0, I)$.

Equi-Probability Partitioning

- ► How we partition the noise levels among blocks is crucial.
- ► Ensure that each block handles a same difficulty:

$$\int_{\sigma_i}^{\sigma_{i+1}} p_{\sigma}(\sigma) d\sigma = \frac{1}{B}$$

► Noise boundaries:

$$\sigma_i = \exp\left(P_{\text{mean}} + P_{\text{std}} \cdot \Phi^{-1}(p_i)\right)$$

where p_i ensures equal cumulative probability and Φ^{-1} is the inverse CDF of the standard normal distribution.

0.35 0.30 0.30 0.25 0.25 0.20 0.10 0.05 0.00 0.05 0.00 Noise level σ

Fig 1. Colored regions represent individual blocks under our partitioning,

Memory Efficiency

- ► Each block trained with independent objectives, resulting in no gradient communication between blocks!
- ► Memory: O(L/B) vs. O(L) for end-to-end backprop

Experiments

Image Generation

Settings:

► Dataset: CIFAR-10 / ImageNet

► Architecture: DiT-S / DiT-L partitioned into 4 blocks

► Evaluation: FID scores (lower = better)

Method	CIFAR-10	ImageNet
End-to-end Backdrop	41.87	16.62
DiffusionBlocks	41.39	15.55

- **✓ Superior quality + 4× memory reduction** during training
- √ 3× faster inference

Language Modeling

Settings:

- ► Dataset: LM-1B
- ► Architecture: Llama-style (12 layers) partitioned into 4 blocks
- ► Evaluation: MAUVE score (higher = better)

Method	MAUVE (↑
End-to-end Backdrop	0.59
DiffusionBlocks	0.77

V Superior quality + 4× memory reduction during training

Ablation Study

Table 1. Effect of block partitioning strategy

Method	FID (↓)
Uniform	68.06
Equi-Probability	45.50

FID (↓)	Speed
38.58	2x
41.39	2x
41.39	4x
53.74	6x
	38.58 41.39 41.39