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1. Motivation

Causal effect of X on Y depends on causal DAG G!

pdoG(x)(y) =
∫ ∏

Vi∈V\X

pVi(vi | paG(vi))dv

truncated factorisation formula
(marginalised over V = V\(X ∪ Y))

causal effect

WHAT IF?? G is not specified up to Markov equivalence class? Can
we still identify causal effects not knowing causal DAG G??

Example †: Given distribution P with the conditional independen-
cies: {

1 ⊥⊥ 2, 1 ⊥⊥ 2 | {3, 4}, 3 ⊥⊥ 4 | {1, 2}

}
Running the Sparsest Permutation causal discovery algorithm
(Raskutti and Uhler, 2018) with input P, does not return a unique output.

The set G of possible outputs is:

G =

{ G1 1

4 2

3

,

G2 1

4 2

3

}

Non-Markov equivalent G1 and G2

and causal DAG G can be represented by either CPDAG G1 or G2

in G.

Can happen in general when the faithfulness assumption is vio-
lated! (Teh, Sadeghi and Soo, 2024)

2. Problem Statement

Given:
G: a set of MPDAGs over nodes V , and X ,Y ⊆ V .

• What are conditions on G such that

pdoG1(x)(y) = pdoG2(x)(y)
for every observational density p Markovian to all MPDAGs in G,
and every DAG G1,G2 ∈

⋃
G∈G[G]?

[G] is the set of DAGs represented by MPDAG G.
Example:[ ]

=

{1

4 2

3

1

4 2

3

,

1

4 2

3

}

MPDAG Represented DAGs (obtained by

directing undirected edges in the MPDAG.)

i.e. for every possible observational density with G, casual effect
of X on Y does not depend on the choice of DAG chosen from all
DAGs represented by all MPDAGs in G; the causal effect of X on
Y is simultaneously identifiable.

• If simultaneously identifiable, formula for the causal effect?

3. Results
The conditions on G:
For all G ∈ G,
1. there are no semi-directed paths from X to Y with only the first

node in X , that starts with −, and
X1 . . ... Yi

semi-directed path (no edges)

Note: same condition as Perkovic 2020

For all G1,G2 ∈ G,
2a. for all Xj

(
maximal subsets (that are connected via − in G1) of X

that are also ancestors of Y in G1
)
,

parents of Xj in G1 = parents of Xj in G2

and likewise with the roles of G1 and G2 switched.

Intuition: reweighting used to obtain the truncated factorisation
formula is the same for both G1 and G2

or
2b. RM(G1;X ,Y ) and RM(G2;X ,Y ) are Markov equivalent

Intuition: both G1 and G2 implies the same truncated factorisa-
tion formula over Y .

RM(G;X ,Y ): ancestral margin of Y in graph G after intervening
on X .

Theorem

Simultaneous identifiability if 1 + 2a or 1 + 2b holds.

The formula is the same as Perkovic 2020, since the conditions
ensure equal evaluation of the causal effect across G.

TL; DR
We propose sufficient conditions for identifying causal effects when
the Markov equivalence class of the causal graph cannot be
uniquely identified.

This can happen during causal discovery when faithfulness is violated
or when edge detection lacks power.

Faithfulness is violated
Consider the set G in Example † from Motivation. The causal effect
of 3 on 2 is simultaneously identifiable since 1 + 2a holds.

Uncertain edge 3 4

G =

{ G1 }
,

1

4 2

35

G2 1

4 2

35

RM(G1; {4}, {5}) = RM(G2; {4}, {5}) = 145

Condition 1 + 2b holds, the causal effect of 4 on 5 is simultaneously
identifiable.
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