Beyond Self-Repellent Kernels: History-Driven Target Towards Efficient Nonlinear MCMC on General Graphs

Jie Hu, Yi-Ting Ma, Do Young Eun

Department of Electrical and Computer Engineering NC State University

ICML 2025 Vancouver, Canada

MCMC on General Graphs

Markov Chain Monte Carlo (MCMC) on General Graphs

- A fundamental tool for understanding graphs, including discrete spaces:
 - E.g., social networks, IoTs, smart grids, biochemical molecules, Ising/Potts models, etc.
- Draw samples from a *Known* Distribution (up to a multiplicative constant) $\mu(x) \propto \exp(-H(x)/T)$
- Estimates $E_{\mu}\{f(X)\} = \sum_{x \in \mathcal{X}} f(x)\mu(x)$ when analyzing entire finite state space is *infeasible*

Applications:

- ✓ Detect malicious bots & malware spread
- ✓ Identify key influencers or customer groups
- ✓ Infer user's preference

✓ Recommendation Systems ✓ YouTube NETFLIX

Monte Carlo Molecular Modeling

Algorithmic Design of MCMC

Key Design Criteria for Efficient Graph Samplers:

$$\mu(x) = \exp(-H(x)/T)/Z$$
, where $Z = \int_x \exp(-H(x)/T)$

- 1. Scale Invariant (S.I.): Operate w/o global information Z of the graph
- 2. Robust Theoretical Convergence (conv.): Guarantee convergence to the target distribution

Determine transition probability $p(i \rightarrow j)$ from node i to node j

3. <u>Efficiency</u>: Requires *fewer samples* to achieve a similar level of approximation accuracy

Improving MCMC – Self Interactions

Our recent breakthrough: Self-Repellent Random Walk (SRRW)

- Concept: Use the random walker's history to influence future transitions
 - Given a time-reversible Markov chain P with target probability distribution μ
 - Based on visit frequency vector \mathbf{x} , modify probability from node $i \to j : \left[\frac{\bar{K}[\mathbf{x}]}{L-1} \right] \stackrel{!}{\to} \mathbb{X}[\mathbf{x}] \stackrel{$
 - 'Non-Markov' or 'history-aware' walker

Key:
Each = denotes a past visit

ICML 2023
Outstanding
Paper Award

nonlinear kernel

- Tackle a challenging open problem, MCMC with self-repellent scheme for the first time
- Beyond traditional non-backtracking approaches which avoid the immediate previous sample

Vishwaraj Doshi, Jie Hu, and Do Young Eun, "Self Repelling Random Walks on General Graphs – Achieving Minimal Sampling Variance via Non-linear Markov Chains", ICML, 2023

Improving MCMC – Self Interactions

Benefits:

- \bigcirc Generated samples still converges to the correct target μ
- Exhibits S.I. property: $K[\mathbf{x}]_{ij} \propto P_{ij} \left(\frac{\mathbf{x}_j}{\mu_i}\right)^{-\alpha}$ proved to the only form to adjust the kernel P w/o knowing Z
- Achieves much better performance

$$\sqrt{n}(\mathbf{x}_n - \boldsymbol{\mu}) \xrightarrow{n \to \infty} N(\mathbf{0}, \boldsymbol{V}_{\mathbf{x}}(\alpha))$$

and the *near-zero* sampling variance $V_{\rm x}(\alpha) = O(1/\alpha)$

More efficient than i.i.d sampler under topological constraints!

Vishwaraj Doshi, Jie Hu, and Do Young Eun, "Self Repelling Random Walks on General Graphs – Achieving Minimal Sampling Variance via Non-linear Markov Chains", ICML, 2023

The Catch: Issues Overlooked in SRRW

1. Computational issues: SRRW requires pre-computation of P_{ij} for all j

Standard Metropolis-Hastings

Lightweight & On-Demand

Step 1: Propose one neighbor $m{j}$ w.p. Q_{ij}

Step 2: Calculate acceptance rate

Cost of acquiring a neighbor's information: O(1)

$$A(i,j) = \min\left\{1, \frac{\mu_j Q_{ji}}{\mu_i Q_{ij}}\right\}$$

└ Step 3: Flip a coin to decide the movement

Key Idea: The probability of staying at i $(P_{ii} = 1 - \sum_{j} P_{ij})$ is an *implicit outcome* of rejection. It is **never pre-computed**.

Self-Repellent Random Walk

Heavy & Pre-Computed Transition Probability

Step 1: Compute prob. to each neighbor P_{ij}

(including self-transition P_{ii})

Step 2: Sample from the full distribution and move

Problem: Need P_{ij} for all j pre-computed, destroying the lightweight nature of MH.

The cost for one sample <u>scales with the node's degree</u>, making it extremely slow in dense graphs.

The Catch: Issues Overlooked in SRRW

- **2.** Reversibility: Requires P to be reversible w.r.t. the given target μ (i.e., $\mu_i P_{ij} = \mu_j P_{ji}$)
 - A requirement to ensure a well-defined stationary distribution $\pi[x]$ for the SRRW kernel K[x]
 - E.g., $\pi_i[\mathbf{x}]K_{ij}[\mathbf{x}] = \pi_i[\mathbf{x}]K_{ii}[\mathbf{x}], \quad \forall i, j \in \mathcal{V}, \mathbf{x} \in \text{Int}(\mathbf{\Sigma})$
 - Exclude a whole class of efficient, advanced *non-reversible* MCMC samplers
- 3. Memory Constraints: Dimension of x_n = the size (#) of state space

History-Driven Target (HDT) MCMC:

Tackle first two issues of SRRW --- computational costs & time-reversibility

- Only takes O(1) computational cost per sample
- Compatible with non-reversible MCMC samplers
- A heuristic remedy for memory issue --- Least Recently Used (LRU) cache scheme

Improvement over SRRW: A Simple Paradigm Shift

Instead of altering the walker's kernel, we modify the target distribution (based on history)

The History-Driven Target (HDT) Framework

- Our History-Driven Target (HDT) is simple but powerful
 - > The HDT Formula:

$$\pi_i[\mathbf{x}] \propto \mu_i \left(\frac{x_i}{\mu_i}\right)^{-\alpha}$$
original target repellence penalty

- Why HDT is a Game-Changer:
 - Universal (Bring your own MCMC): Works as a "wrapper" for any MCMC method, including the fast non-reversible ones that SRRW cannot use.
 - \triangleright Lightweight: Integrates into any sampler by simply replacing the target μ with $\pi[x]$, preserving the original O(1) cost.

For example, in MHRW, the acceptance rate

$$A_{ij}[\mathbf{x}] = \min \left\{ 1, \frac{\pi_j[\mathbf{x}]Q_{ji}}{\pi_i[\mathbf{x}]Q_{ij}} \right\}$$

only unnormalized value is needed for calculation

Key Theoretical Guarantees

Three key theoretical findings (c.f. Thoerem 3.3, Corollary 3.4, Lemma 3.6)

- 1. Unbiased Sampling: Proven to converge to the correct target distribution
 - $\mathbf{x}_n \xrightarrow[a.s.]{n \to \infty} \boldsymbol{\mu}$, i.e., empirical measure converges to the target distribution almost surely
- 2. Near-Zero Variance: Same $O(1/\alpha)$ variance reduction as SRRW in the CLT
 - $\sqrt{n}(\mathbf{x}_n \boldsymbol{\mu}) \xrightarrow{n \to \infty} N(\mathbf{0}, \boldsymbol{V}_{\mathbf{x}}(\alpha))$, where sampling variance $\boldsymbol{V}_{\mathbf{x}}(\alpha) = \frac{1}{2\alpha + 1} \boldsymbol{V}^{base}$
- 3. Superior Cost-Efficiency: Provably more efficient than SRRW under same budget
 - $\sqrt{B}(\mathbf{x}_B \boldsymbol{\mu}) \xrightarrow{B \to \infty} N(\mathbf{0}, \boldsymbol{V}_{cost}(\alpha))$, and cost-based sampling variance $\boldsymbol{V}_{cost}^{HDT}(\alpha) \leq_L \frac{2}{\text{avg deg+1}} \cdot \boldsymbol{V}_{cost}^{SRRW}(\alpha)$ Budget of computation B

Result 1: HDT Universally Boosts Sampler Performance

HDT-MCMC delivers the best of both worlds for MCMC tasks:

- > Draw samples from uniform target on multiple real-world graphs
- > Test over multiple baseline MCMC samplers, including
 - Metropolis-Hastings Random Walk (MHRW), Multiple-Try Metropolis (MTM), MH
 with delayed acceptance (MHDA) non-reversible

Improvement over *any* MCMC sampler Solid lines (HDT version) v.s. dash lines (baseline)

Result 2: HDT is More Cost-Efficient than SRRW

Compare HDT-MHRW and SRRW under a fixed computational budget B

Lightweight design, HDT-MCMC more cost efficient than SRRW

Computational cost per sample at node i:

- HDT-MCMC: 1
- SRRW: \deg_i (degree of node i) due to the precomputation of all P_{ij} of neighbor j

Denser the graph

- ⇒ *larger* the average neighborhood size
- ⇒ *smaller* covariance

Heuristic Memory Reduction Scheme

Least Recently Used (LRU) cache scheme

- Essential idea: track only recently visited states, discarding the least-recently used when capacity in cache \mathcal{C} is reached, whose size $|\mathcal{C}| = r|\mathcal{V}|$ (r acts as the compression ratio)
- Leverages temporal locality: non-neighboring states do not affect self-repellency
- For a neighbor $j \notin \mathcal{C}$ of current state i, extrapolate its frequency \hat{x}_i via

Result 3: HDT is Scalable and Memory-Efficient

Least Recently Used (LRU) cache scheme

For a neighbor $j \notin \mathcal{C}$ of current state i, extrapolate its frequency via

$$\hat{x}_j = \mu_j \sum_{k \in (\mathcal{N}(i) \cup \{i\}) \cap \mathcal{C}} \frac{1}{|(\mathcal{N}(i) \cup \{i\}) \cap \mathcal{C}|} \cdot \frac{x_k}{\mu_k}$$

 \triangleright HDT-MHRW w/LRU robust to the choice of r (compression ratio) leads to 10% smaller TVD than

MHRW with over 90% memory reduction (r = 0.1)

Conclusion

Our previous work SRRW – first to utilize history with theoretical analysis to show near-zero sampling variance

HDT makes history-aware MCMC a practical, powerful, and universal tool:

- Paradigm shift from kernel mod to target mod: Retain near-zero variance benefits
- Universal and lightweight "wrapper": accelerate any MCMC sampler on discrete spaces
- Provably more cost-efficient than the previous state-of-the-art
- Scalable to large graphs via a memory-saving LRU cache scheme

Thank you!

Q&A

Feel free to chat with us at East Exhibition Hall A-B #E-1304 (11 am - 1:30 pm)

Paper link [arXiv preprint]

Backup Slides

SRRW vs. HDT-MCMC: A Comparison

	ICML 2023 Outstanding Paper Award	This work
Feature	SRRW (Self-Repellent Random Walk)	HDT-MCMC (History-Driven Target MCMC)
Core Idea	Tweaks the <u>kernel</u> $K[\mathbf{x}]_{ij} \propto P_{ij} \left(\frac{x_j}{\mu_j}\right)^{-\alpha}$	Tweaks the <u>target</u> $\pi_i[\mathbf{x}] \propto \mu_i \left(\frac{x_i}{\mu_i}\right)^{-\alpha}$
Baseline Chain	Must be time-reversible	Works with advanced non-reversible (faster) chains AND reversible ones <i>Cor. 3.4</i>
Computational Cost	Higher (needs to evaluate P_{ij} for all neighbors)	Lower (simpler to implement with existing samplers)
Ergodicity	$\sqrt{}$	√ ,
Asymptotic Covariance	$V^{SRRW}(\alpha) \sim O(1/\alpha)$	$V^{HDT}(\alpha) \sim O(1/\alpha)$ Thm. 3.3
Key Advantage	Groundbreaking performance	Often better practical speed due to lower cost & adoption of non-reversible chains

[†] Covariance of HDT-MCMC $\approx \frac{1}{avg \ degree}$ of SRRW under same budget of computation (cf. Lemma 3.6)

HDT-MCMC: Deterministic analysis

■ The closed form of $\pi(\mathbf{x}) = [\pi_i(\mathbf{x})], \forall i \in \mathcal{V}$, is given by

$$\pi_i(\mathbf{x}) = \frac{\mu_i \left(\frac{x_i}{\mu_i}\right)^{-\alpha}}{\sum_k \mu_k \left(\frac{x_k}{\mu_k}\right)^{-\alpha}} = \omega(\mathbf{x})$$

Theorem (Global stability of ODE) For all $\alpha \geq 0$, $\mathbf{x}(0) \in \text{Int}(\Sigma)$, we have

$$\mathbf{x}(t) \to \boldsymbol{\mu}$$
 as $t \to \infty$,

where $\mu = [\mu_i] \in \text{Int}(\Sigma)$ is the target stationary distribution, and $\mathbf{x}(t)$ is the solution (trajectory) of the mean-field ODE $\dot{\mathbf{x}}(t) = \pi(\mathbf{x}(t)) - \mathbf{x}(t)$.

• The proof steps are similar to the ODE analysis of SRRW.

HDT-MCMC: Stochastic Analysis

Theorem 1 (Strong Law of Large Number (SLLN) and Central Limit Theorem (CLT)) For all $\alpha \geq 0$, any $\mathbf{x}_0 \in [N]$, we have

$$\mathbf{x}_n \to \boldsymbol{\mu}$$
 as $n \to \infty$, almost surely $\sqrt{n}(\mathbf{x}_n - \boldsymbol{\mu}) \to N(\mathbf{0}, \boldsymbol{V}_{\mathbf{x}}(\alpha))$ as $n \to \infty$, in dist.

where $N(\mathbf{0}, V(\alpha))$ is a normal distribution with mean $\mathbf{0}$ and covariance $V_{\mathbf{x}}(\alpha)$, given by

$$V_{\mathbf{x}}(\alpha) = \frac{1}{2\alpha + 1} V^{base} = O(1/\alpha)$$

Corollary 2 (Preserved Efficiency Ordering)

Suppose two MCMC samplers S_1 and S_2 converge to μ with limiting covariances V^{S_1} and V^{S_2} satisfying $V^{S_1} <_L V^{S_2}$,

Meaning that sampler S_1 is more efficient than sampler S_2 . Applying HDT framework to both, yielding $V^{S_1-HDT}(\alpha)$ and $V^{S_2-HDT}(\alpha)$, preserves the ordering:

$$V^{S_1-HDT}(\alpha) <_L V^{S_2-HDT}(\alpha), \forall \alpha \geq 0.$$

Any known covariance orderings between reversible and non-reversible samplers carry over to HDT-MCMC, whereas SRRW cannot accommodate non-reversible Markov chains.

HDT-MCMC: Cost-Related Analysis

Let a_i (resp. b_i) $\in (0, \infty)$ be the *computational cost* of the *i*-th sample in HDT-MCMC (resp. SRRW). Define:

$$T^{HDT}(B) \coloneqq \max\{k \mid a_1 + a_2 + \dots + a_k \le B\}$$

 $T^{SRRW}(B) \coloneqq \max\{k' \mid b_1 + b_2 + \dots + b_{k'} \le B\}$

the number of samples that HDT-MCMC (resp. SRRW) can generate before hitting the total budget B.

Average computational cost of HDT, SRRW

Theorem 7 (Cost-Based CLT) Suppose that as
$$B \to \infty$$
,
$$B/T^{HDT}(B) \to C^{HDT}, \qquad B/T^{SRRW}(B) \to C^{SRRW} \quad a.s.$$
 Then, we have
$$\sqrt{B} \left(\mathbf{x}_{T^{HDT}(B)} - \boldsymbol{\mu} \right) \to N \big(\mathbf{0}, C^{HDT} \boldsymbol{V}_{\mathbf{x}}^{HDT}(\alpha) \big) \qquad as \ n \to \infty, \qquad in \ dist.$$

$$\sqrt{B} \left(\mathbf{x}_{T^{SRRW}(B)} - \boldsymbol{\mu} \right) \to N \big(\mathbf{0}, C^{SRRW} \boldsymbol{V}_{\mathbf{x}}^{SRRW}(\alpha) \big) \quad as \ n \to \infty, \qquad in \ dist.$$

HDT-MCMC: Cost-Related Analysis

Theorem 3 (Cost-based CLT)

Suppose that as $B \to \infty$,

$$B/T^{HDT}(B) \rightarrow C^{HDT}, \qquad B/T^{SRRW}(B) \rightarrow C^{SRRW} \quad a.s.$$

Then, we have

$$\sqrt{B}\left(\mathbf{x}_{T^{HDT}(B)} - \boldsymbol{\mu}\right) \to N\left(\mathbf{0}, C^{HDT}\boldsymbol{V}_{\mathbf{x}}^{HDT}(\alpha)\right) \quad as \ n \to \infty, \qquad in \ dist.$$

$$\sqrt{B}\left(\mathbf{x}_{T^{SRRW}(B)} - \boldsymbol{\mu}\right) \to N\left(\mathbf{0}, C^{SRRW}\boldsymbol{V}_{\mathbf{x}}^{SRRW}(\alpha)\right) \quad as \ n \to \infty, \qquad in \ dist.$$

Lemma 8 (Ordering of cost-based covariances between HDT-MCMC and SRRW)

$$C^{HDT} \boldsymbol{V}_{\mathbf{x}}^{HDT}(\alpha) <_{L} \frac{2}{E_{i \sim \boldsymbol{\mu}}[\mathcal{N}(i)] + 1} C^{SRRW} \boldsymbol{V}_{\mathbf{x}}^{SRRW}(\alpha)$$

- \triangleright Cost-based covariance of HDT-MCMC at least a factor of $\frac{2}{E_{i\sim\mu}[\mathcal{N}(i)]+1}$ times smaller than that of SRRW for every given α , suggesting a universal advantage.
- ightarrow Denser the graph, larger the average neighborhood size $E_{i\sim\mu}[\mathcal{N}(i)]$, smaller covariance

NC STATE UNIVERSITY