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MCMC on General Graphs
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Markov Chain Monte Carlo (MCMC) on General Graphs

• A fundamental tool for understanding graphs, including discrete spaces:

• E.g., social networks, IoTs, smart grids, biochemical molecules, Ising/Potts models, etc.

• Draw samples from a Known Distribution (up to a multiplicative constant)
• Estimates 𝐸𝜇 𝑓 𝑋 = σ𝑥∈ 𝒳 𝑓 𝑥 𝜇 𝑥  when analyzing entire finite state space is infeasible

Applications:
✓ Detect malicious bots & malware spread
✓ Identify key influencers or customer groups
✓ Infer user’s preference

✓ Recommendation Systems
✓ Web Crawling / Search Index 
✓ Monte Carlo Molecular Modeling
✓ Ising and Potts Models
✓ Energy-based Models

𝜇 𝑥 ∝ exp(−𝐻(𝑥)/𝑇)



Algorithmic Design of MCMC
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Key Design Criteria for Efficient Graph Samplers:

1. Scale Invariant (S.I.): Operate w/o global information 𝑍 of the graph

2. Robust Theoretical Convergence (conv.): Guarantee convergence to the 
target distribution

3. Efficiency: Requires fewer samples to achieve a similar level of 
approximation accuracy

𝑝(𝑖 → 𝑗)

Determine transition 
probability 𝑝(𝑖 → 𝑗)
from node 𝑖 to node 𝑗

Conv.

Efficiency

S.I.

𝑖 𝑗

invisible
invisible

𝜇 𝑥 = exp(−𝐻(𝑥)/𝑇)/𝑍, where 𝑍 = 𝑥׬
exp −𝐻(𝑥)/𝑇



Our recent breakthrough: Self-Repellent Random Walk (SRRW) 

• Concept: Use the random walker’s history to influence future transitions

• Given a time-reversible Markov chain 𝑷 with target probability distribution 𝝁

• Based on visit frequency vector 𝐱, modify probability from node 𝑖 → 𝑗: 𝐾 𝐱 𝑖𝑗 ∝ 𝑃𝑖𝑗
𝑥𝑗

𝜇𝑗

−𝛼

• ‘Non-Markov’ or ‘history-aware’ walker

Improving MCMC – Self Interactions
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Key:
Each     denotes a past visit

ICML 2023 
Outstanding 
Paper Award

Vishwaraj Doshi, Jie Hu, and Do Young Eun, “Self Repelling Random Walks on General Graphs – Achieving Minimal Sampling Variance via Non-

linear Markov Chains”, ICML, 2023

nonlinear kernel

• Tackle a challenging open problem, MCMC with 

self-repellent scheme for the first time

• Beyond traditional non-backtracking approaches

      which avoid the immediate previous sample



Improving MCMC – Self Interactions
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Benefits:

Generated samples still converges to the correct target 𝝁

Exhibits S.I. property: 𝐾 𝐱 𝑖𝑗 ∝ 𝑃𝑖𝑗
𝑥𝑗

𝜇𝑗

−𝛼

 proved to the only form to adjust the kernel 𝑃 w/o knowing 𝑍

Achieves much better performance

𝑛 𝐱𝑛 − 𝝁
𝑑𝑖𝑠𝑡.

𝑛→∞
𝑁 𝟎, 𝑽𝐱 𝛼

and the near-zero sampling variance 𝑽𝐱 𝛼 = 𝑂(1/𝛼)

Vishwaraj Doshi, Jie Hu, and Do Young Eun, “Self Repelling Random Walks on General Graphs – Achieving Minimal Sampling Variance via Non-

linear Markov Chains”, ICML, 2023

More efficient than i.i.d sampler under topological constraints!



The Catch: Issues Overlooked in SRRW
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1. Computational issues: SRRW requires pre-computation of 𝑃𝑖𝑗 for all 𝑗

Standard Metropolis-Hastings

Lightweight & On-Demand

Step 1: Propose one neighbor 𝑗 w.p. 𝑄𝑖𝑗

Step 2: Calculate acceptance rate

𝐴 𝑖, 𝑗 = min 1,
𝜇𝑗𝑄𝑗𝑖

𝜇𝑖𝑄𝑖𝑗

Step 3: Flip a coin to decide the movement

Self-Repellent Random Walk

Heavy & Pre-Computed Transition Probability

Step 1: Compute prob. to each neighbor 𝑃𝑖𝑗 

(including self-transition 𝑃𝑖𝑖)

Step 2: Sample from the full distribution and move

Cost of acquiring 
a neighbor’s 
information: 𝑂(1)

Key Idea: The probability of staying at 𝑖 
(𝑃𝑖𝑖 = 1 − σ𝑗 𝑃𝑖𝑗) is an implicit outcome of 

rejection. It is never pre-computed. 

𝑗1 𝑖

𝑗2 𝑗3

𝑗4 Cost: 𝑂(deg𝑖)

𝑃𝑖𝑗2

𝑃𝑖𝑗1 𝑃𝑖𝑗4

𝑃𝑖𝑗3 𝑃𝑖𝑖 = 1 − ෍

𝑘=1

4

𝑃𝑖𝑗𝑘

Problem: Need 𝑃𝑖𝑗 for all 𝑗 pre-computed, destroying the 

lightweight nature of MH. 
The cost for one sample scales with the node's degree, 
making it extremely slow in dense graphs.



The Catch: Issues Overlooked in SRRW
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2. Reversibility: Requires 𝑷 to be reversible w.r.t. the given target 𝜇 (i.e., 𝜇𝑖𝑃𝑖𝑗 = 𝜇𝑗𝑃𝑗𝑖)

3. Memory Constraints: Dimension of 𝐱𝑛 = the size (#) of state space

• A requirement to ensure a well-defined stationary distribution 𝝅[𝐱] for the SRRW kernel 𝑲[𝐱]
• E.g., 𝜋𝑖 𝐱 𝐾𝑖𝑗 𝐱 = 𝜋𝑗 𝐱 𝐾𝑗𝑖 𝐱 ,  ∀𝑖, 𝑗 ∈ 𝒱, 𝐱 ∈ Int(𝚺)

• Exclude a whole class of efficient, advanced non-reversible MCMC samplers

• Problematic in large graphs, configuration spaces (exponentially large!)
• E.g., X (Twitter) platform with 586 million users ⇒ Requires >500 GB of RAM just to store the visit 

counters of every user.
• An Ising model with 32 × 32 spins on the 2D grid ⇒ 21024 States… Physically impossible to store. 

More states than atoms in the known universe.

History-Driven Target (HDT) MCMC: 
Tackle first two issues of SRRW --- computational costs & time-reversibility
• Only takes 𝑶(𝟏) computational cost per sample
• Compatible with non-reversible MCMC samplers
• A heuristic remedy for memory issue --- Least Recently Used (LRU) cache scheme



Instead of altering the walker's kernel, we modify the target distribution (based on history)
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Improvement over SRRW: A Simple Paradigm Shift

Update 𝐱 via past 
samples

Construct SRRW kernel 𝑲[𝐱] by modifying 𝑷
(High computational cost: require evaluation of 

𝑃𝑖𝑗 for all 𝑗) 

Generate samples

Initialize empirical 
measure 𝐱𝟎

Reversible MCMC kernel 𝑷
(e.g., MH, MHDR, MTM)

Input: 
unnormalized 
target dist. ෥𝝁

Update 𝐱 via past 
samples

Generate samples

Initialize empirical 
measure 𝐱𝟎

Both Reversible & Non-reversible MCMC
(e.g., MH, MHDR, MTM, MHDA, NRMH, 2-cycle method)
Lightweight: only replace target 𝝁 → 𝝅[𝐱] in the sampler

Update target dist. 
𝝅[𝐱]

(a). Self-Repellent Random Walk (b). History-Driven Target (HDT) Framework

Input: 
unnormalized 
target dist. ෥𝝁

Kernel Mod. →
Adaptive Target



▪Our History-Driven Target (HDT) is simple but powerful
➢ The HDT Formula:

▪Why HDT is a Game-Changer:
➢ Universal (Bring your own MCMC): Works as a "wrapper" for any MCMC method, 

including the fast non-reversible ones that SRRW cannot use.

➢ Lightweight: Integrates into any sampler by simply replacing the target 𝜇 with 𝜋[𝐱], 
preserving the original 𝑂(1) cost.
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The History-Driven Target (HDT) Framework

original target repellence penalty

For example, in MHRW, the acceptance rate

𝐴𝑖𝑗[𝐱] = min 1,
𝜋𝑗 𝐱 𝑄𝑗𝑖

𝜋𝑖 𝐱 𝑄𝑖𝑗

only unnormalized value is needed for calculation 

𝜋𝑖 𝐱 ∝ 𝜇𝑖

𝑥𝑖

𝜇𝑖

−𝛼



Three key theoretical findings (c.f. Thoerem 3.3, Corollary 3.4, Lemma 3.6)

1. Unbiased Sampling: Proven to converge to the correct target distribution

• 𝐱𝑛

𝑛→∞

𝑎.𝑠.
𝝁, i.e., empirical measure converges to the target distribution almost surely

2. Near-Zero Variance: Same 𝑂(1/𝛼) variance reduction as SRRW in the CLT

• 𝑛 𝐱𝑛 − 𝝁
𝑛→∞

𝑑𝑖𝑠𝑡.
𝑁 𝟎, 𝑽𝐱 𝛼 , where sampling variance 𝑽𝐱 𝛼 =

1

2𝛼+1
𝑽𝑏𝑎𝑠𝑒

3. Superior Cost-Efficiency: Provably more efficient than SRRW under same budget

• 𝐵 𝐱𝐵 − 𝝁
𝐵→∞

𝑎.𝑠.
𝑁 𝟎, 𝑽𝑐𝑜𝑠𝑡 𝛼 , and cost-based sampling variance 𝑽𝑐𝑜𝑠𝑡

𝑯𝑫𝑻 𝛼 ≤𝐿
2

avg deg+1
⋅ 𝑽𝑐𝑜𝑠𝑡

𝑺𝑹𝑹𝑾 𝛼
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Key Theoretical Guarantees

Budget of computation 𝐵 Loewner ordering



Result 1: HDT Universally Boosts Sampler Performance

HDT-MCMC delivers the best of both worlds for MCMC tasks:

➢ Draw samples from uniform target on multiple real-world graphs

➢ Test over multiple baseline MCMC samplers, including

• Metropolis-Hastings Random Walk (MHRW), Multiple-Try Metropolis (MTM), MH 

with delayed acceptance (MHDA)

HDT-MCMC

Baseline

Improvement over any 
MCMC sampler
Solid lines (HDT version) 
v.s. dash lines (baseline)
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Result 2: HDT is More Cost-Efficient than SRRW
Compare HDT-MHRW and SRRW under a fixed computational budget 𝐵

➢ Lightweight design, HDT-MCMC more cost efficient than SRRW

Average Degree of Graph
Facebook: 43.6

P2p-Gnutella04: 7.4

Improvement  more 
pronounced in the 

facebook graph

𝐵

Computational cost per sample at node 𝑖:
• HDT-MCMC: 1
• SRRW: deg𝑖 (degree of node 𝑖) due to the pre-

computation of all 𝑃𝑖𝑗 of neighbor 𝑗

Denser the graph 
⇒ larger the average neighborhood size
⇒ smaller covariance
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Heuristic Memory Reduction Scheme
Least Recently Used (LRU) cache scheme

➢ Essential idea: track only recently visited states, discarding the least-recently used when 

capacity in cache 𝒞 is reached, whose size 𝒞 = 𝑟 𝒱  (𝑟 acts as the compression ratio)

➢ Leverages temporal locality: non-neighboring states do not affect self-repellency

➢ For a neighbor 𝑗 ∉ 𝒞 of current state 𝑖, extrapolate its frequency ො𝑥𝑗  via

ො𝑥𝑗

𝜇𝑗
= ෍

𝑘∈ 𝒩 𝑖 ∪ 𝑖 ∩𝒞

1

𝒩 𝑖 ∪ 𝑖 ∩ 𝒞
⋅

𝑥𝑘

𝜇𝑘

‘Deviation’ of past visit of 
node 𝑘 in the cache 𝒞 

compared to its target value

Average level of ‘deviation’ from 
neighbors that are in the cache 𝒞

Assume the level of ‘deviation’ 
of node 𝑗 is similar to its 
neighbors in the cache 𝒞



14

Result 3: HDT is Scalable and Memory-Efficient
Least Recently Used (LRU) cache scheme

➢ For a neighbor 𝑗 ∉ 𝒞 of current state 𝑖, extrapolate its frequency via

ො𝑥𝑗 = 𝜇𝑗 ෍

𝑘∈ 𝒩 𝑖 ∪ 𝑖 ∩𝒞

1

𝒩 𝑖 ∪ 𝑖 ∩ 𝒞
⋅

𝑥𝑘

𝜇𝑘

➢ HDT-MHRW w/ LRU robust to the choice of 𝑟 (compression ratio) leads to 10% smaller TVD than 

MHRW with over 90% memory reduction (𝑟 = 0.1)
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Conclusion

Our previous work SRRW – first to utilize history with theoretical analysis to show near-zero sampling variance

HDT makes history-aware MCMC a practical, powerful, and universal tool:

 Paradigm shift from kernel mod to target mod: Retain near-zero variance benefits

 Universal and lightweight "wrapper“: accelerate any MCMC sampler on discrete spaces

 Provably more cost-efficient than the previous state-of-the-art

 Scalable to large graphs via a memory-saving LRU cache scheme 



Thank you!

Q&A

Feel free to chat with us at East Exhibition Hall A-B #E-1304 (11 am – 1:30 pm)
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Paper link [arXiv preprint]
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SRRW vs. HDT-MCMC: A Comparison
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Feature SRRW (Self-Repellent Random Walk) HDT-MCMC (History-Driven Target MCMC)

Core Idea Tweaks the kernel 𝐾 𝐱 𝑖𝑗 ∝ 𝑃𝑖𝑗
𝑥𝑗

𝜇𝑗

−𝛼

Tweaks the target 𝜋𝑖 𝐱 ∝ 𝜇𝑖
𝑥𝑖

𝜇𝑖

−𝛼

Baseline Chain Must be time-reversible
Works with advanced non-reversible (faster) 

chains AND reversible ones

Computational Cost
Higher 

(needs to evaluate 𝑃𝑖𝑗 ​ for all neighbors) 
Lower 

(simpler to implement with existing samplers)

Ergodicity √ √

Asymptotic 
Covariance

𝑽𝑆𝑅𝑅𝑊 𝛼 ∼ 𝑂(1/𝛼) 𝑽𝐻𝐷𝑇 𝛼 ∼ 𝑂(1/𝛼)

Key Advantage Groundbreaking performance
Often better practical speed due to lower 
cost & adoption of non-reversible chains

†

† Covariance of HDT-MCMC ≈
1

𝑎𝑣𝑔 𝑑𝑒𝑔𝑟𝑒𝑒
 of SRRW under same budget of computation (cf. Lemma 3.6) 

ICML 2023 Outstanding Paper Award This work

Thm. 3.3

Cor. 3.4



HDT-MCMC: Deterministic analysis 

▪ The closed form of 𝝅 𝐱 = [𝜋𝑖(𝐱)], ∀𝑖 ∈ 𝒱, is given by

▪ The proof steps are similar to the ODE analysis of SRRW.

Theorem (Global stability of ODE) For all 𝛼 ≥ 0, 𝐱(0) ∈ Int(Σ), we have
𝐱 𝑡 ⟶ 𝝁 as 𝑡 → ∞,

where 𝝁 = 𝜇𝑖 ∈ Int(Σ) is the target stationary distribution, and 𝐱 𝑡  is the solution (trajectory) of the mean-

field ODE ሶ𝐱(𝑡) = 𝝅 𝐱 𝑡 − 𝐱(𝑡).

= 𝜔(𝐱)

19

𝜋𝑖 𝐱 =
𝜇𝑖

𝑥𝑖
𝜇𝑖

−𝛼

σ𝑘 𝜇𝑘
𝑥𝑘
𝜇𝑘

−𝛼



HDT-MCMC: Stochastic Analysis

Theorem 1 (Strong Law of Large Number (SLLN) and Central Limit Theorem (CLT)) For all 𝛼 ≥ 0, any 𝐱0 ∈
Int(Σ), and any 𝑋0 ∈ [𝑁], we have

𝐱𝑛 ⟶ 𝝁 as 𝑛 → ∞,  𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦

𝑛 𝐱𝑛 − 𝝁 ⟶ 𝑁 𝟎, 𝑽𝐱 𝛼  𝑎𝑠 𝑛 → ∞,  𝑖𝑛 𝑑𝑖𝑠𝑡.

where 𝑁 𝟎, 𝑽 𝛼  is a normal distribution with mean 𝟎 and covariance 𝑽𝐱 𝛼 , given by

𝑽𝐱 𝛼 =
1

2𝛼 + 1
𝑽𝑏𝑎𝑠𝑒 = 𝑂(1/𝛼)

20

Corollary 2 (Preserved Efficiency Ordering) 
Suppose two MCMC samplers 𝑆1 and 𝑆2 converge to 𝝁 with limiting covariances 𝑽𝑆1  and 𝑽𝑆2  satisfying

𝑽𝑆1 <𝐿 𝑽𝑆2 ,
Meaning that sampler 𝑆1 is more efficient than sampler 𝑆2. Applying HDT framework to both, yielding 
𝑉𝑆1−𝐻𝐷𝑇(𝛼) and 𝑉𝑆2−𝐻𝐷𝑇 𝛼 , preserves the ordering:

𝑉𝑆1−𝐻𝐷𝑇 𝛼 <𝐿 𝑉𝑆2−𝐻𝐷𝑇 𝛼 , ∀𝛼 ≥ 0.

Any known covariance orderings between reversible and non-reversible samplers carry over to HDT-MCMC, 
whereas SRRW cannot accommodate non-reversible Markov chains.



HDT-MCMC: Cost-Related Analysis
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Theorem 7 (Cost-Based CLT) 
Suppose that as 𝐵 → ∞, 

𝐵/𝑇𝐻𝐷𝑇(𝐵)  →  𝐶𝐻𝐷𝑇 ,  𝐵/𝑇𝑆𝑅𝑅𝑊(𝐵)  →  𝐶𝑆𝑅𝑅𝑊 𝑎. 𝑠.
Then, we have

𝐵 𝐱𝑇𝐻𝐷𝑇(𝐵) − 𝝁 ⟶ 𝑁 𝟎, 𝐶𝐻𝐷𝑇𝑽𝐱
𝐻𝐷𝑇 𝛼  𝑎𝑠 𝑛 → ∞,  𝑖𝑛 𝑑𝑖𝑠𝑡.

𝐵 𝐱𝑇𝑆𝑅𝑅𝑊(𝐵) − 𝝁 ⟶ 𝑁 𝟎, 𝐶𝑆𝑅𝑅𝑊𝑽𝐱
𝑆𝑅𝑅𝑊 𝛼  𝑎𝑠 𝑛 → ∞,  𝑖𝑛 𝑑𝑖𝑠𝑡.

Let 𝑎𝑖 (resp. 𝑏𝑖) ∈  (0, ∞) be the computational cost of the 𝑖-th
sample in HDT-MCMC (resp. SRRW). Define:

the number of samples that HDT-MCMC (resp. SRRW) can generate before 
hitting the total budget 𝐵.

𝑇𝐻𝐷𝑇 𝐵 ≔  max 𝑘 𝑎1 + 𝑎2 + ⋯ +  𝑎𝑘 ≤  𝐵}
𝑇𝑆𝑅𝑅𝑊 𝐵 ≔ max 𝑘′ 𝑏1 + 𝑏2 + ⋯ + 𝑏𝑘′ ≤  𝐵}

Average computational cost of HDT, SRRW



HDT-MCMC: Cost-Related Analysis
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Theorem 3 (Cost-based CLT) 
Suppose that as 𝐵 → ∞, 

𝐵/𝑇𝐻𝐷𝑇(𝐵)  →  𝐶𝐻𝐷𝑇 ,  𝐵/𝑇𝑆𝑅𝑅𝑊(𝐵)  →  𝐶𝑆𝑅𝑅𝑊 𝑎. 𝑠.
Then, we have

𝐵 𝐱𝑇𝐻𝐷𝑇(𝐵) − 𝝁 ⟶ 𝑁 𝟎, 𝐶𝐻𝐷𝑇𝑽𝐱
𝐻𝐷𝑇 𝛼  𝑎𝑠 𝑛 → ∞,  𝑖𝑛 𝑑𝑖𝑠𝑡.

𝐵 𝐱𝑇𝑆𝑅𝑅𝑊(𝐵) − 𝝁 ⟶ 𝑁 𝟎, 𝐶𝑆𝑅𝑅𝑊𝑽𝐱
𝑆𝑅𝑅𝑊 𝛼  𝑎𝑠 𝑛 → ∞,  𝑖𝑛 𝑑𝑖𝑠𝑡.

Lemma 8 (Ordering of cost-based covariances between HDT-MCMC and SRRW) 

𝐶𝐻𝐷𝑇𝑽𝐱
𝐻𝐷𝑇 𝛼 <𝐿

2

𝐸𝑖∼𝝁 𝒩 𝑖 + 1
𝐶𝑆𝑅𝑅𝑊𝑽𝐱

𝑆𝑅𝑅𝑊 𝛼

➢ Cost-based covariance of HDT-MCMC at least a factor of 
𝟐

𝑬𝒊∼𝝁 𝓝 𝒊 +𝟏
 times smaller than 

that of SRRW for every given 𝛼, suggesting a universal advantage.
➢ Denser the graph, larger the average neighborhood size 𝑬𝒊∼𝝁 𝓝 𝒊 , smaller covariance
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