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MCMC on General Graphs

Markov Chain Monte Carlo (MCMC) on General Graphs

A fundamental tool for understanding graphs, including discrete spaces:
* E.g., social networks, loTs, smart grids, biochemical molecules, Ising/Potts models, etc.

 Draw samples from a Known Distribution (up to a multiplicative constant) n(x) « exp(—H(x)/T)
* Estimates E,{f (X)} = X e x f(x)u(x) when analyzing entire finite state space is infeasible

' Applications: :
v" Detect malicious bots & malware spread v Recommendation Systems @Youlube NETFLIX :
. v ldentify key influencers or customer groups v" Web Crawling / Search Index & €3 & |
v Infer user’s preference v" Monte Carlo Molecular Modeling

v" Ising and Potts Models C L ¢

v" Energy-based Models : m
@ Qj |
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Algorithmic Desigh of MCMC

Key Design Criteria for Efficient Graph Samplers:
u(x) = exp(—H(x)/T)/Z, where Z = [ _exp(—H(x)/T)
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Determine transition
— probability p(i = j)

2. Robust Theoretical Convergence (conv.): Guarantee convergence to the from node i to node j

target distribution

3. Efficiency: Requires fewer samples to achieve a similar level of
approximation accuracy
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Improving MCMC — Self Interactions

Our recent breakthrough: Self-Repellent Random Walk (SRRW)

e Concept: Use the random walker’s history to influence future transitions

* Given a time-reversible Markov chain P with target probability distribution u

_____ \N—a
e Based on visit frequency vector X, modify probability from node i — j:-‘(K[x]ij’:oc P;j (%)
""" ]

‘Non-Markov’ or ‘history-aware’ walker

——————————
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” Each == denotes a past visit
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nonlinear kernel

Tackle a challenging open problem, MCMC with
self-repellent scheme for the first time
Beyond traditional non-backtracking approaches

which avoid the immediate previous sample

Vishwaraj Doshi, Jie Hu, and Do Young Eun, “Self Repelling Random Walks on General Graphs — Achieving Minimal Sampling Variance via Non-

linear Markov Chains”, ICML, 2023
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Improving MCMC — Self Interactions

Benefits:

@ Generated samples still converges to the correct target u

N\~
%) proved to the only form to adjust the kernel P w/o knowing Z
J

@ Exhibits S.I. property: K[x];; < P;; (

@ Achieves much better performance
n—oo

Vn(xy, — 1) — N(0,Vy(a))

and the near-zero sampling variance Vy(a) = 0(1/a)

_________________________________________________________________________________________________________________________
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Vishwaraj Doshi, Jie Hu, and Do Young Eun, “Self Repelling Random Walks on General Graphs — Achieving Minimal Sampling Variance via Non-
linear Markov Chains”’, ICML, 2023

NC STATE UNIVERSITY

5



The Catch: Issues Overlooked in SRRW

1. Computational issues: SRRW requires pre-computation of P;; for all j

Standard Metropolis-Hastings Self-Repellent Random Walk
Lightweight & On-Demand

Heavy & Pre-Computed Transition Probability
~ Step 1: Propose one neighbor j w.p. Q;;

Step 1: Compute prob. to each neighbor P;;

Step 2: Calculate acceptance rate  Cost of acquiring
| a neighbor’s

(including self-transition Py;)

_ Step 3: Flip a coin to decide the movement

Problem: Need P;; for all j pre-computed, destroying the
lightweight nature of MH.

The cost for one sample scales with the node's degree,
making it extremely slow in dense graphs.

Key Idea: The probability of staying at i
(Pi; = 1 — X P;j) is an implicit outcome of

rejection. It is never pre-computed.
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The Catch: Issues Overlooked in SRRW

2. Reversibility: Requires P to be reversible w.r.t. the given target u (i.e., u; P;; = u;P;;)

* A requirement to ensure a well-defined stationary distribution m[x] for the SRRW kernel K[X]
« Eg., m[x]K;;|x]| = m;[x]Kj;[x], Vi,j €V,X € Int(X)
* Exclude a whole class of efficient, advanced non-reversible MCMC samplers

3. Memory Constraints: Dimension of x,, = the size (#) of state space

History-Driven Target (HDT) MCMC:

Tackle first two issues of SRRW --- computational costs & time-reversibility

* Only takes O(1) computational cost per sample
 Compatible with non-reversible MCMC samplers
* A heuristic remedy for memory issue --- Least Recently Used (LRU) cache scheme
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Improvement over SRRW: A Simple Paradigm Shift

Instead of altering the walker's kernel, we modify the target distribution (based on history)

Initialize empirical
measure X

A\ 4 I

Input:
unnormalized
target dist. i

Input: Initialize empirical
unnormalized measure Xy
target dist. i

_—_ﬂ

Update X via past

samples Kernel Mod. —
Adaptive Target

Reversible MCMC kernel P

(e.g., MH, MHDR, MTM)
v

Update X via past
samples

Update target dist.

Construct SRRW kernel K[x] by modifying P

High computational cost: require evaluation of
(Hig P 9 (e.g., MH, MHDR, MTM, MHDA, NRMH, 2-cycle method)

A
1
1
1
:
! Both Reversible & Non-reversible MCMC
1
1
1
1
1
1
1
1
1

Pif forall j) Lightweight: only replace target u — m[Xx] in the sampler
v !
[ Generate samples ]— ---------- ' [ Generate samples J -------------
(a). Self-Repellent Random Walk (b). History-Driven Target (HDT) Framework
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The History-Driven Target (HDT) Framework

" Qur History-Driven Target (HDT) is simple but powerful

> The HDT Formula: x;\ "
i [X] o i | —
i G VNG
original target repellence penalty

= Why HDT is a Game-Changer:

» Universal (Bring your own MCMC): Works as a "wrapper" for any MCMC method,
including the fast non-reversible ones that SRRW cannot use.

> Lightweight: Integrates into any sampler by simply replacing the target u with m[x],

preserving the original O (1) cost. For example, in MHRW, the acceptance rate

;| x| jS}
;x| Q;;

only unnormalized value is needed for calculation

T o o e e e e e e e e e e e e e e e e e e e e e e e e e e Ee e e e e e M e e e e e Em e e e e e e e e e e e e e e e e e e e e e e e e o

Aij [X] = min {1,
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Key Theoretical Guarantees

Three key theoretical findings (c.f. Thoerem 3.3, Corollary 3.4, Lemma 3.6)

1. Unbiased Sampling: Proven to converge to the correct target distribution

n—0o

* X, — M, i.e. empirical measure converges to the target distribution almost surely
a.s.

2. Near-Zero Variance: Same O(1/a) variance reduction as SRRW in the CLT

o Jn(x, —n —>N(O Vx(a)) where sampling variance Vy(a) = —— pbase

2a+1

3. Superior Cost-Efficiency: Provably more efficient than SRRW under same budget

\/ B_>_)OO : - HDT ySRRW

e VB(xg—pn) N(O, Vcost(a)), and cost-based sampling variance V o (o) <; S V2sse” (a)
a.s. avg eg+1

Budget of computation B Loewner ordering
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Result 1: HDT Universally Boosts Sampler Performance

HDT-MCMC delivers the best of both worlds for MCMC tasks:

» Draw samples from uniform target on multiple real-world graphs
» Test over multiple baseline MCMC samplers, including

* Metropolis-Hastings Random Walk (MHRW), Multiple-Try Metropolis (MTM), MH
f\

with delayed acceptance (MHDA) non-reversible

p2p-Gnutella04 Graph p2p-Gnutella04 Graph

Lo, S 0.10 :
- -== MHRW = n -== MHRW
N = HDT-MHRW (a = 5) _L; n = HDT-MHRW (a =5)

______________________________________________________ g 091 N\y, MTM (K=3) @ o8 W MTM
: s N HDT-MTM (a =5, K = 3) s - % HDT-MTM (a = 5)
. Improvement over any b 08 "8, -=- MHDA(a=5) =) % === MHDA
) 8 HDT-MHDA (a = 5) ph A\ —— HDT-MHDA (a =5)
. MCMC sampler § *7 —— SRRW (a=5) 5 0061 W — SRRW (@=5)
| E= S .
: . . [ .C_B 06' \ .
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! . . = 0.54 o’
' v.s. dash lines (baseline) g . o
“““““““““““““““““““““““““““““““ = ' HDT‘MCMC % 0.02 -
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Result 2: HDT is More Cost-Efficient than SRRW

Compare HDT-MHRW and SRRW under a fixed computational budget B

» Lightweight design, HDT-MCMC more cost efficient than SRRW

———————————————————————

Average Degree of Graph

_____________________________________________________________________________________

1 |
| I
I ! | . .
| Facebook: 43.6 : : Computational cost per sample at node i:
. __ P2p-Gnutella04: 7.4, + HDT-MCMC: 1
= ——— _A{' '« SRRW: deg; (degree of node i) due to the pre-
731 N R s S . computation of all P;; of neighbor j
0.8
Improvement more
A 071 pronounced in the
e facebook graph R :
oo . Denser the graph j
0.51 E H H i
R P . = larger the average neighborhood size
—— HDT-MHRW (a = 5) facebook . |
041 ___ SRRW p2p-Gnutellad . = smaller covariance ,
HDT-MHRW (a = 5) p2p-Gnutella04 "'# L e o '
0.3 T T T T : T
5000 10000 15000 20000 25000 30000
Computational Costs B 12
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Heuristic Memory Reduction Scheme

Least Recently Used (LRU) cache scheme

» Essential idea: track only recently visited states, discarding the least-recently used when
capacity in cache C is reached, whose size |C| = r|V| (r acts as the compression ratio)
» Leverages temporal locality: non-neighboring states do not affect self-repellency

» Foraneighbor j € C of current state i, extrapolate its frequency X; via

_____________________________________________

fj\\‘ 1 ‘Deviation’ of past visit of
P = _ , node k in the cache C
_______________________________________________ ‘\\ H_] II' kE(N(i)U{i})ﬂC |(N(l) U {l}) n Cl Compared tO itS target Value

. Assume the level of ‘deviation’ | -
. of node j is similar to its ; \ [ |

e |ghbor5|nthe cac he 6 __________ | ' Average level of ‘deviation’ from

' neighbors that are in the cache C

___________________________________________________
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Result 3: HDT is Scalable and Memory-Efficient

Least Recently Used (LRU) cache scheme

» For a neighbor j € C of current state i, extrapolate its frequency via

1 Xk

2= Z . | X
ke(v(DHu{ip)ne (V@O U{iHNCl pg

» HDT-MHRW w/ LRU robust to the choice of r (compression ratio) leads to 10% smaller TVD than

MHRW with over 90% memory reduction (r = 0.1)

facebook Graph p2p-Gnutella04 Graph
1.0 —— MHRW 1.0 —— MHRW
——— HDT-MHRW (a = 5) with r=0.01 —— HDT-MHRW (a = 5) with r=0.01
0.9 —— HDT-MHRW (a = 5) with r=0.05 0.01 —— HDT-MHRW (a = 5) with r=0.05
—— HDT-MHRW (@ =5) with r=0.10 —— HDT-MHRW (a = 5) with r=0.10
—— HDT-MHRW (a = 5) with r=0.15 —— HDT-MHRW (a = 5) with r=0.15
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E 0.71 E 0.7
0.6 06
0.5 os
0.4
0.4-
2000 4000 6000 8000 100001200014000 5000 10000 15000 20000 25000 30000

14

St St
NC STATE UNIVERSITY €ps eps



Conclusion

Our previous work SRRW — first to utilize history with theoretical analysis to show near-zero sampling variance

HDT makes history-aware MCMC a practical, powerful, and universal tool:

L Paradigm shift from kernel mod to target mod: Retain near-zero variance benefits
L Universal and lightweight "wrapper”: accelerate any MCMC sampler on discrete spaces
L Provably more cost-efficient than the previous state-of-the-art

L Scalable to large graphs via a memory-saving LRU cache scheme

15
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Thank you!

Q&A

Feel free to chat with us at East Exhibition Hall A-B #E-1304 (11 am — 1:30 pm)

Paper link [arXiv preprint] ?

NC STATE UNIVERSITY
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SRRW vs. HDT-MCMC: A Comparison

Feature

Core Idea

Baseline Chain

Computational Cost

Ergodicity

Asymptotic
Covariance

Key Advantage

+ Covariance of HDT-MCMC =

NC STATE UNIVERSITY

ICML 2023 Outstanding Paper Award
SRRW (Self-Repellent Random Walk)

N\ T
Tweaks the kernel K[x];; « P;; (%)
]

Must be time-reversible

Higher
(needs to evaluate P;; for all neighbors)

J

VSRRW (0) ~ 0(1 /)

Groundbreaking performance

1
avg degree

This work

HDT-MCMC (History-Driven Target MCMC()
-
Tweaks the target m;[x] « y; (%)
Works with advanced non-reversible (faster)

______________

Lower
(simpler to implement with existing samplers)

v } _______________

VEDT (@) ~ O(1/a) |5 —
Often better practical speed due to lower
cost & adoption of non-reversible chains'

of SRRW under same budget of computation (cf. Lemma 3.6)
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HDT-MCMC: Deterministic analysis

* The closed form of m(x) = [m;(X)], Vi € V, is given by

Theorem (Global stability of ODE) For all @ = 0, x(0) € Int(X), we have

x(t) > u as t - oo,
where u = [y;] € Int(2) is the target stationary distribution, and x(t) is the solution (trajectory) of the mean-
field ODE x(t) = m(x(t)) — x(¢).

" The proof steps are similar to the ODE analysis of SRRW.

19
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HDT-MCMC: Stochastic Analysis

Theorem 1 (Strong Law of Large Number (SLLN) and Central Limit Theorem (CLT)) Forall @ = 0, any X, €
Int(X), and any X, € [N], we have

X, — W as n — oo, almost surely

Vnx, —n) — N(O, Vi(a)) asn - o, in dist.
where N(O, V(a)) is a normal distribution with mean 0 and covariance V4 (a), given by

vbase = 0(1/a)

Vxla) =577

Corollary 2 (Preserved Efficiency Ordering)
Suppose two MCMC samplers S; and S, converge to i with limiting covariances V°1 and V>2 satisfying
V51 <, V2,
Meaning that sampler §; is more efficient than sampler S,. Applying HDT framework to both, yielding
V51~HDT (q) and V52~HPT (), preserves the ordering:
Vo1—HDT (o) <, V527HPT (¢), v > 0.

Any known covariance orderings between reversible and non-reversible samplers carry over to HDT-MCMC,
whereas SRRW cannot accommodate non-reversible Markov chains.

NC STATE UNIVERSITY
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HDT-MCMC: Cost-Related Analysis

Let a; (resp. b;) € (0, ) be the computational cost of the i-th
sample in HDT-MCMC (resp. SRRW). Define:

THPT(B) := max{k|a,+a, + -+ a, < B}
T-RRW(B) := max{k'| b + b, + -+ b,s < B}

the number of samples that HDT-MCMC (resp. SRRW) can generate before

hitting the total budget B. Average computational cost of HDT, SRRW '

Theorem 7 (Cost-Based CLT) % \

Suppose that as B — oo,
B/THPT(B) — , B /TSRRW (B) —> a.s.

Then, we have
\/E(XTHDT(B) — u) — N(0, CHPTYHDT () asn — oo, in dist.

VB (XTSRRW(B) — u) — N(O, CSRRWV,S(RRW(CZ)) asn — oo, in dist.

21
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HDT-MCMC: Cost-Related Analysis

Theorem 3 (Cost-based CLT)
Suppose that as B — oo,

B/THDT(B) N CHDT, B/TSRRW(B) N CSRRW a. s.
Then, we have

VB (XTHDT(B) — u) — N(0, CHPTYHDT (o)) asn — oo, in dist.
VB (XTSRRW(B) — u) — N(O, CSRRWV;ERRW(a)) asn — oo, in dist.

Lemma 8 (Ordering of cost-based covariances between HDT-MCMC and SRRW)

CHDTVgDT(a) <L CSRRWVSS('RRW(a)

Ei y[V@H]+1

» Cost-based covariance of HDT-MCMC at least a factor of 2 . times smaller than
Ei~u[N(l)]+1

that of SRRW for every given «, suggesting a universal advantage.
> Denser the graph, larger the average neighborhood size E;._, |V (i)], smaller covariance

NC STATE UNIVERSITY
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