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Attention is a key 
ingredient in transformers 

Despite empirical success, 
underlying mechanisms 

remain unclear

𝐟 𝐗 = 	𝐕	softmax
1
𝑑!
𝐊"𝐐

• Prompt (context tokens):  𝐗 = 𝐱!…𝐱" ∈ ℝ#×"

• Let 𝐖%	,𝐖&, 𝐖'	- learnable attention weights

• Define 𝐕 = 𝐖%𝐗,   𝐊 = 𝐖&𝐗,   𝐐 = 𝐖'𝐗,

II - Attention layer (transformers)

Two (seemingly) unrelated architectures

I - Associative memory networks

1. Select binary patterns 𝛏!, … , 𝛏( 

2. Induce couplings 𝐉 = ∑)*!
( 𝛏)𝛏)+

3. Patterns are fixed points of 𝐱,-! = sgn 𝐉𝐱.

Classical formulation (1982, Hopfield)

Energy function 
𝐱 ∈ −1,+1 #

𝝃! 𝝃" …

𝐸 𝐱 = −𝐱"𝐉	𝐱
																																				= −∑#$%

& 𝛏#"	𝐱
'

   

Recent generalizations
Dense associative memory

Sharper nonlinearities: 
 → enhanced storage capacity

2016, Krotov & Hopfield  𝐹 = 𝑚!

       2017, Demircigil et al.  𝐹 = 𝑒(

𝐸 𝐱 = −∑#$%
& 𝐹 𝛏#"𝐱  



Motivation:  
How can this connection 

be further developed?

We propose 
a natural interface:

“In-context denoising”

Background: Bridging associative memory and attention

Attention update

𝐸 𝐱 = −𝛽#!log +
$%!

&

𝑒'𝛏/0𝐱 +
1
2𝐱

*𝐱

𝐱+,! = 𝛏	softmax 𝛏*𝐱+ 𝐕	softmax !
-1
𝐊*𝐐  

where 𝛏 ≡ 𝛏! ⋯ 𝛏" 	(𝑛×𝑝)

Transformer attention update can be viewed as 
one step of dense associative memory dynamics.

“Hopfield networks is All You Need”
   Ramsauer, … , Hochreiter, ICLR 2021

Idea: Start from ”Modern Hopfield network” 
with continuous state 𝐱 ∈ ℝ.

≈

𝝃! 𝝃" …



In-context denoising – Overview

Steps

1. Select a data distribution 𝑝2 from a given class 𝒟

2. Sample 𝐿 + 1 points  (“pure” context tokens)

3. Corrupt the final token:  9𝑥 ∼ 𝑝34567(⋅	∣ 𝑥"-!) 

4. Construct embedding 𝐸 = (context, query).
Use this to estimate the target 𝐹8 𝐸 ↦ L𝑥 

Repeat to generate many ICL training pairs (𝐸 9 , 𝑥"-!
(9) )

Objective: find denoiser 𝐹)(𝐸) that minimizes MSE

min
)
	𝔼 𝑋*+% − 𝐹)(𝐸) ' 	

where expectation is over:  𝑝, ∼ 𝒟, 	 𝑋%:* ∼ 𝑝,, 	 E𝑋 ∼ 𝑝./012(⋅	∣ 𝑋*+%)

In-context learning
Each prompt is a 
new, random task

see e.g. 
     Garg et al. NeurIPS 2022
     Zhang et al. JMLR 2024



In-context denoising – Cases

where expectation is over:  𝑝, ∼ 𝒟, 	 𝑋%:* ∼ 𝑝,, 	 E𝑋 ∼ 𝑝./012(⋅	∣ 𝑋*+%)

Objective: find denoiser 𝐹)(𝐸) with 𝐸 = context, query  that minimizes MSE

min
)
	𝔼 𝑋*+% − 𝐹)(𝐸) ' 	

M𝑋

𝑋!:" ∼ 𝑝2

dimension 𝑑,	sample variance 𝜎!" 𝑑- spheres, radius 𝑅 𝑝	components:  𝒩(𝜇# , 𝜎!"𝐼) 



Linear case – Details and optimal predictor

Ansatz – 𝑓 9𝑥 = 𝑉 9𝑥

Plug in to objective, differentiate, solve

	 𝑉4F, = argmin	%	𝔼 𝑋 − 𝑉 M𝑋
G 		

                   =	…	
																				= 	𝛾𝜎HG𝑃	 where 𝛾 ≡ !

I#$-I%
$ 

Resulting loss bound:  𝐶 𝑉4F, = 𝛾𝜎HG𝜎JG𝑑

Dataset generation
    

Randomly select a 
𝑑-dim subspace 𝑆(9) of ℝ#

 Let 𝑃(9) be the projection onto 𝑆(9)

Sample 𝐿 + 1 tokens, corrupt final one

  𝑋.	~	𝑃(9)𝑌.   where  𝑌.	~	𝑁(0, 𝜎HG𝐼)   
   M𝑋	~	𝑋 + 𝑍   where  𝑍	~	𝑁(0, 𝜎JG𝐼)

Parameters:  𝐿, 𝑑, 𝜎3', 𝜎4'

Can show Bayes optimal denoiser is:

𝑓4F, 9𝑥 = 𝔼 𝑋 M𝑋 = 9𝑥

For isotropic Gaussian noise,

𝑓4F, 9𝑥 =
∫ 𝑥	𝑒K LMKM $/GI%

$
	𝑝2 𝑥 	𝑑𝑥

∫ 𝑒K LMKM $/GI%
$	𝑝2 𝑥 	𝑑𝑥

Sub in 𝑝2,  solve  →  agrees!

Heuristic approach

Goal: We seek a denoiser 

𝑓( E𝑋):ℝ5 → ℝ5  

that minimizes MSE: 
 

𝐶 = 𝔼,, 7, 𝑋 − 𝑓( E𝑋) '

Use knowledge of 𝑝2, 𝑝34567
to derive the baseline

General approach

Linear baselines

(linear case only!)

9𝑥(9)

𝑥!:"
(9)

Random 
subspaces	
𝑖 = 1, … , 𝑁



Optimal denoisers ↔	 Trained attention layers

𝑓/89 T𝑥 = 𝛾	𝜎3'𝑃	 T𝑥
																								= 𝛾𝔼 𝑋𝑋: 	 T𝑥

𝑓/89 T𝑥 =
∫ 𝑒 ;, <;∥ />"

#
𝑥	𝑑𝑆;

∫ 𝑒 ;, <;∥ />"
#	𝑑𝑆;

dimension 𝑑,	variance 𝜎HG 𝑑- spheres, radius 𝑅 𝑝	components:  𝒩(𝜇T, 𝜎HG𝐼) 

𝑓/89 T𝑥 ≈ 𝛾𝜎4'
∑? 𝑒@ #$,	 <; 𝜇?
∑? 𝑒@ #$,	 <;

* small cluster variance 𝜎&' → 0	

Recall  𝛾 ≡ 1/(𝜎!" + 𝜎$")
Bayes optimal:  𝑓%&' = 𝔼 𝑋 7𝑋

These solutions are expressible by attention layers 𝑓/ 𝐸
Attention input: 𝐸 = 𝑋, 1𝑥 = 𝑥!…𝑥( 	 1𝑥 ∈ ℝ)× (+! ,	 weights 𝑊,- ,𝑊./ ∈ ℝ)×)

We derive optimal denoisers for three elementary cases
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We derive optimal denoisers for three elementary cases

𝑓/89 T𝑥 = 𝛾	𝜎3'𝑃	 T𝑥
																								= 𝛾𝔼 𝑋𝑋: 	 T𝑥

Linear attention

𝑓MNO 𝐸 = 𝑊PQ 𝐿R%𝑋𝑋" 𝑊ST T𝑥

optimal for Case 1 (subspaces)

𝑊U%
∗ = 𝛼𝐼, 𝑊U%

∗ = 𝛽𝐼

with 𝛼𝛽 = 1/(𝜎HG + 𝜎JG)

𝐿 → ∞
(large context limit)
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We derive optimal denoisers for three elementary cases

Linear attention

𝑓MNO 𝐸 = 𝑊PQ 𝐿R%𝑋𝑋" 𝑊ST T𝑥

optimal for Case 1 (subspaces)

𝑊U%
∗ = 𝛼𝐼, 𝑊U%

∗ = 𝛽𝐼

with 𝛼𝛽 = 1/(𝜎HG + 𝜎JG)

Softmax attention

𝑓 𝐸 = 𝑊PQ𝑋	softmax 𝑋"𝑊ST T𝑥  

optimal for Case 2, 3 (spheres, GMM)

𝑊U%
∗ = 𝛼𝐼, 𝑊U%

∗ = 𝛽𝐼
with 𝛼 = 1, 𝛽 = 1/𝜎JG

Provided 𝜇0 = 𝑅	𝐿 → ∞
(large context limit)

Recall  𝛾 ≡ 1/(𝜎!" + 𝜎$")
Bayes optimal:  𝑓%&' = 𝔼 𝑋 7𝑋



Experiment: Trained attention layers converge to optimal baseline

Linear attention
optimal for Case 1 (subspaces)

𝑊PQ
∗ = 𝛼𝐼, 𝑊PQ

∗ = 𝛽𝐼  with 𝛼𝛽 = %
>%#+>"

#

Softmax attention
optimal for Case 2, 3 (spheres, GMM)

𝑊PQ
∗ = 𝛼𝐼, 𝑊PQ

∗ = 𝛽𝐼  with  𝛼 = 1, 𝛽 = 1/𝜎4'

Training: Adam, 𝑁 = 800 samples, random initial weights
Plots show means + min/max envelope over 6 random seeds



In-context denoising bridges attention and associative memory

(Trained)  Softmax attention(Trained)  Linear attention

ℰ 𝑋, 𝑠 = −
1
𝛽
log ,

;<=

>

𝑒?@&'A +
1
2𝛼

𝑠 BℰCDE 𝑋, 𝑠 = −𝑠F𝐽𝑠 +
1
2𝛼

𝑠 B

 

 

Dense associative memory (MCHN)

𝑠 𝑡 + 1 = 𝑠 𝑡 − 𝛾	∇Vℰ 𝑋, 𝑠 𝑡
	= Attn 𝑋, 𝑠(𝑡)

“Spherical” Hopfield model

𝑓∗ 𝑋, 𝑠 = 𝛼𝑋	softmax 𝛽𝑋*𝑠𝑓123∗ 𝑋, 𝑠 = 𝛼𝛽𝐿#!	𝑋𝑋*𝑠

𝐽 = Y
"
𝑋𝑋+

1. For Cases 1-3, attention layers trained have scaled identity weights

2. Gradient descent on context-dependent AM landscape is mappable 
to attention (step size 𝛾 = 𝛼 set by the Lagrange multiplier of 𝑠 ')

Remarks Context tokens → associative memory 
                                          patterns (landscape)   

                     Query → corrupted initial state



‘One step’ vs. recurrent denoising

• One-step optimally blends query information with contextual guidance

• Exact retrieval (iteration) is sub-optimal: loses detailed information about the query

Is one gradient step really better than many? 

• Sample 𝐿 = 30	context 
tokens for sphere case 
in dimension 𝑛 = 2

• Energy landscape is a 
context-dependent DAM 
(trained softmax attention)

• Denoising trajectories shown 
for three initial queries



Summary & Outlook

Introduced “In-context denoising”

• Single attention step can express Bayes optimal solutions 
on certain restricted problems

• Trained attention layers converge to scaled identity weights

• Non-isotropic noise (non-trivial 𝑊(),𝑊*+)

• Positional embedding; dynamical inference

• Multi-layer / multi-head attention

• Connection to diffusion models

Refined  “Attention  ↔  Associative memory networks”

• Trained attention layers perform gradient descent 
on context-dependent associative memory landscape

• Recurrent iteration (exact retrieval) is suboptimal

Next steps and 
ongoing work

Establishes a bridge between three communities: 
In-context learning,  Attention mechanisms,  &  Associative memory networks

Poster
East Building 

#E-3207


