LoRA-One: One-step full gradient could suffice for fine-tuning large language models, provably and efficiently

Yuanhe Zhang (Warwick), Fanghui Liu (Warwick), Yudong Chen (UW-Madison)

at ICML'25, Vancouver

How can theory contribute to efficiency in LLMs?

LoRA: Low-rank adaption

Published as a conference paper at ICLR 2022

LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

Edward Hu* Yelong Shen* Phillip Wallis Zeyuan Allen-Zhu Yuanzhi Li Shean Wang Lu Wang Weizhu Chen Microsoft Corporation edward, hu@mila.guebec

{yeshe, phwallis, zeyuana, swang, luw, wzchen}@microsoft.comyuanzhil@andrew.cmu.edu

$$oldsymbol{W}^{ ext{FT}} = oldsymbol{W}^{ ext{pre}} + \Delta \in \mathbb{R}^{d imes k}$$

• Formulation:

 $\Delta \approx \boldsymbol{A}\boldsymbol{B}$ with $\boldsymbol{A} \in \mathbb{R}^{d \times r}$ and $\boldsymbol{B} \in \mathbb{R}^{r \times k}$

• Initialization:

$$[\mathbf{A}_0]_{ij} \sim \mathcal{N}(\mathbf{0}, \alpha^2)$$
 and $[\mathbf{B}_0]_{ij} = 0$.

Today's talk: Improve "sub-optimal" LoRA

How can theory guide practice

- understanding: training dynamics of (A_t, B_t)
- design new algorithm -> performance improvement
- clarify some misconceptions in previous algorithm designs
- Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^\top \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \, \boldsymbol{G} \\ \eta \, \boldsymbol{G}^\top & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^\top \end{bmatrix} + \text{nonlinear term} \qquad \begin{cases} [\boldsymbol{A}_0]_{ij} \sim \mathcal{N}(0, \alpha^2) \\ [\boldsymbol{B}_0]_{ij} = 0 \, . \end{cases}$$

 \square One-step full gradient: $\mathbf{G} \in \mathbb{R}^{d \times k}$ and rank $(\mathbf{G}) = r^*$

$$G := -\nabla_W L(W^{\text{pre}}) = \frac{1}{N} \widetilde{X}^{\top} \widetilde{X} \Delta$$

Today's talk: Improve "sub-optimal" LoRA

How can theory guide practice

- understanding: training dynamics of $(\boldsymbol{A}_t, \boldsymbol{B}_t)$
- design new algorithm -> performance improvement
- clarify some misconceptions in previous algorithm designs
- ☐ Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^\top \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \, \boldsymbol{G} \\ \eta \, \boldsymbol{G}^\top & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^\top \end{bmatrix} + \text{nonlinear term} \qquad \begin{cases} [\boldsymbol{A}_0]_{ij} \sim \mathcal{N}(0, \alpha^2) \\ [\boldsymbol{B}_0]_{ij} = 0 \, . \end{cases}$$

 \square One-step full gradient: $\mathbf{G} \in \mathbb{R}^{d \times k}$ and rank $(\mathbf{G}) = r^*$

$$\boldsymbol{G} := -\nabla_{\boldsymbol{W}} L(\boldsymbol{W}^{\mathsf{pre}}) = \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} \widetilde{\boldsymbol{X}} \Delta$$

Today's talk: Improve "sub-optimal" LoRA

How can theory guide practice

- understanding: training dynamics of $(\boldsymbol{A}_t, \boldsymbol{B}_t)$
- design new algorithm -> performance improvement
- clarify some misconceptions in previous algorithm designs
- ☐ Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^\top \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \boldsymbol{G} \\ \eta \boldsymbol{G}^\top & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^\top \end{bmatrix} + \text{nonlinear term} \qquad \begin{cases} [\boldsymbol{A}_0]_{ij} \sim \mathcal{N}(0, \alpha^2) \\ [\boldsymbol{B}_0]_{ij} = 0 \ . \end{cases}$$

 $oldsymbol{\square}$ One-step full gradient: $oldsymbol{G} \in \mathbb{R}^{d imes k}$ and $\mathrm{rank}(oldsymbol{G}) = r^*$

$$m{G} := -
abla_{m{W}} L(m{W}^{\mathsf{pre}}) = rac{1}{N} \widetilde{m{X}}^{ op} \widetilde{m{X}} \Delta.$$

Understanding: Alignment on B_t

Understanding: Alignment on B_t

Theorem (Alignment between G and B_t , informal)

For the linear setting, LoRA via gradient descent yields

$$\angle(\mathbf{V}_{r^*}(\mathbf{B}_t), \mathbf{V}_{r^*}(\mathbf{G})) = 0, \quad \forall t \in \mathbb{N}_+.$$

5

Understanding: Alignment on A_t

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^{\top} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \boldsymbol{G} \\ \eta \boldsymbol{G}^{\top} & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^{\top} \end{bmatrix} + \text{nonlinear term}$$

Understanding: Alignment on A_t

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^{\top} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \boldsymbol{G} \\ \eta \boldsymbol{G}^{\top} & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^{\top} \end{bmatrix} + \text{nonlinear term}$$

Theorem (Alignment between G and A_t , informal)

For small initialization over \mathbf{A}_0 , after $t^* = \Theta(\ln d)$ steps, LoRA updates yield $\angle(\mathbf{U}_{r^*}(\mathbf{A}_{t^*}), \mathbf{U}_{r^*}(\mathbf{G}))$ is small, w.h.p.

6

Understanding: Alignment on A_t

Figure 2: Principal angle of fine-tuning T5 on MRPC.

Theorem (Alignment between G and A_t , informal)

For small initialization over \mathbf{A}_0 , after $t^* = \Theta(\ln d)$ steps, LoRA updates yield $\angle(\mathbf{U}_{r^*}(\mathbf{A}_{t^*}), \mathbf{U}_{r^*}(\mathbf{G}))$ is small, w.h.p.

Algorithm design principle

$$\square$$
 SVD: $G = USV^{\top}$

$$A_0 = U_{[:,1:r]}S_{[1:r]}^{\frac{1}{2}}.$$

$$B_0 = S_{[1:r]}^{\frac{1}{2}}V_{[:,1:r]}^{\top}.$$
 (Spec-init.)

Algorithm design principle

$$\begin{array}{ll}
\square \text{ SVD: } \boldsymbol{G} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{\top} \\
\boldsymbol{A}_{0} = \boldsymbol{U}_{[:,1:r]}\boldsymbol{S}_{[1:r]}^{\frac{1}{2}}. \\
\boldsymbol{B}_{0} = \boldsymbol{S}_{[1:r]}^{\frac{1}{2}}\boldsymbol{V}_{[:,1:r]}^{\top}.
\end{array} \tag{Spec-init.}$$

Key Message: we can "escape" the alignment stage

Under (Spec-init.), for both linear/nonlinear models, we can directly achieve the alignment at initialization.

$$\|\mathbf{A}_0\mathbf{B}_0 - \Delta\|_{\mathrm{F}}$$
 is small, $w.h.p.$

7

Algorithm design principle

$$\begin{array}{ll}
\square \text{ SVD: } \boldsymbol{G} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{\top} \\
\boldsymbol{A}_{0} = \boldsymbol{U}_{[:,1:r]}\boldsymbol{S}_{[1:r]}^{\frac{1}{2}}. \\
\boldsymbol{B}_{0} = \boldsymbol{S}_{[1:r]}^{\frac{1}{2}}\boldsymbol{V}_{[:,1:r]}^{\top}.
\end{array} \tag{Spec-init.}$$

Key Message: we can "escape" the alignment stage

Under (Spec-init.), for both linear/nonlinear models, we can directly achieve the alignment at initialization.

$$\|\boldsymbol{A}_0\boldsymbol{B}_0 - \Delta\|_{\mathrm{F}}$$
 is small, $w.h.p.$

The "best" initialization strategy!

"Best" initialization: phase portrait

One-step gradient can suffice on small-scale datasets!

Dataset Size	MNLI 393k	SST-2 67k	CoLA 8.5k	QNLI 105k	MRPC 3.7k
Pre-trained	-	89.79	59.03	49.28	63.48
Spectral init.	-	90.48	73.00	76.64	68.38
LoRA ₈	85.30 _{±0.04}	94.04 _{±0.09}	$72.84_{\pm 1.25}$	93.02 _{±0.07}	68.38 _{±0.01}

One-step gradient can suffice on small-scale datasets!

Dataset Size	MNLI 393k	SST-2 67k	CoLA 8.5k	QNLI 105k	MRPC 3.7k
Pre-trained	-	89.79	59.03	49.28	63.48
Spectral init.	-	90.48	73.00	76.64	68.38
LoRA ₈	85.30 _{±0.04}	94.04 _{±0.09}	$72.84_{\pm 1.25}$	93.02 _{±0.07}	68.38 _{±0.01}

Time cost (sec.)	LoRA	Spectral init.
CoLA	47s	<1s
MRPC	25s	<1s

Results on LLaMA 2-7B (continue to run)

Figure 3: Accuracy comparison across different methods over epochs on GSM8K.

Results on LLaMA 2-7B (continue to run)

Figure 3: Accuracy comparison across different methods over epochs on GSM8K.

LoRA-GA (Wang et al, 2024): make LoRA's gradients align to full fine-tuning!

LoRA-GA (Wang et al, 2024): make LoRA's gradients align to full fine-tuning!

LoRA-GA (Wang et al, 2024): make LoRA's gradients align to full fine-tuning!

Method	Init. on A	Init. on B	Calibration
LoRA	$\mathcal{N}(0, lpha^{2})$	0	-
LoRA-GA	$oldsymbol{U}_{[:,1:r]}$	$oldsymbol{V}_{[:,r+1:2r]}^ op$	$oldsymbol{W}^{pre} - oldsymbol{\mathcal{A}}_0 oldsymbol{\mathcal{B}}_0$
LoRA-One	$m{U}_{[:,1:r]}m{\mathcal{S}}_{[1:r]}^{1/2}$	$m{\mathcal{S}}_{[1:r]}^{1/2}m{\mathcal{V}}_{[:,1:r]}^{ op}$	-

LoRA-GA (Wang et al, 2024): make LoRA's gradients align to full fine-tuning!

Method	Init. on A	Init. on B	Calibration
LoRA	$\mathcal{N}(0, lpha^{2})$	0	-
LoRA-GA	$oldsymbol{U}_{[:,1:r]}$	$oldsymbol{V}_{[:,r+1:2r]}^{ op}$	$oldsymbol{W}^{pre} - oldsymbol{A}_0 oldsymbol{B}_0$
LoRA-One	$m{U}_{[:,1:r]}m{\mathcal{S}}_{[1:r]}^{1/2}$	$m{\mathcal{S}}_{[1:r]}^{1/2}m{\mathcal{V}}_{[:,1:r]}^{ op}$	-

Takeaway messages: speedup via spectral initialization

- ullet subspace alignment: $m{G}$ and $(m{A}_t, m{B}_t) \Rightarrow$ theory-grounded algorithm design
- "optimal" non-zero initialization strategy
- clarification on gradient alignment based algorithms
- spectral initialization enables feature learning...
- global convergence on nonlinear models, scaled GD...