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How can contribute to efficiency in LLMs?
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LoRA: Low-rank adaption

Published as a conference paper at ICLR 2022
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WFT — Wwpre —|—A c Rdxk

Formulation:

Pretrained A ~ AB with A € Rdxr and B ¢ ]Rer

Weights

Initialization:

[Ao]j ~ N(0,0%) and [Bgl;=0.

W € Rdxk




Today's talk: Improve “sub-optimal”’ LoRA

How can theory guide practice

e understanding: training dynamics of (A;, B¢)
e design new algorithm -> performance improvement

e clarify some misconceptions in previous algorithm designs
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Ari1 la  nG||A: . [AO]ij ~ N(0, 02)
— 4+ nonlinear term
B [nGT I ||B] [Bol; = 0.

(3 One-step full gradient: G € R?** and rank(G) = r*

G = —VwL(WPe) = %)N(T)?A.



Understanding: Alignment on B,




Understanding: Alignment on B,

Theorem (Alignment between G and B;, informal)

For the linear setting, LoRA via gradient descent yields
LV, (B.),V.(G) =0, VteN,.




Understanding: Alignment on A,
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Understanding: Alignment on A,

Al Iq 776 A; .
B—trH [UGT I BI 4+ nonlinear term

Theorem (Alignment between G and A;, informal)

For small initialization over Aq, after t* = ©(In d) steps, LoRA updates yield
Z(U, (A ), U~ (G)) is small,w.h.p.




Understanding: Alignment on A,
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Figure 2: Principal angle of fine-tuning T5 on MRPC.

Theorem (Alignment between G and A;, informal)

For small initialization over Ag, after t* = ©(In d) steps, LoRA updates yield
Z(U, (A ), U (G)) is small,w.h.p.




Algorithm design principle

ASVD: G = USV'
AO = U[:,l:r]S[EL,] .

(Spec-init.)

HERYE
By = S[l:r] v[:,l:r] .
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Key Message: we can “escape’ the alignment stage

Under (Spec-init.), for both linear/nonlinear models, we can directly achieve
the alignment at initialization.

|[AoBo — Allr is small, w.h.p.
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The “best” initialization strategy! )




“Best” initialization: phase portrait

Log-Transformed Surface with Phase Portrait and Trajectories

el
Phase Portrait (Negative Gradient)
I LoRA Init
I Spectral Init

log-transformed loss




One-step gradient can suffice on small-scale datasets!

Dataset MNLI SST-2 ColLA QNLI MRPC
Size 393k 67k 8.5k 105k 3.7k

Pre-trained - 89.79 59.03 49.28 63.48
Spectral init. - 90.48 73.00 76.64 68.38

LORAg 85.30:t0_04 94.04:&0.09 72.84:‘:1_25 93.02:&0,07 68.38:‘:0_01
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Results on LLaMA 2-7B (continue to run)
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Figure 3: Accuracy comparison across different methods over epochs on GSM8K.

LoRA: 6h 20min +3min
~ Memory [T EGRAT216 GBI + 0.1GB
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Clarification on gradient alignment based work

LoRA-GA (Wang et al, 2024): make LoRA's gradients align to full ﬁne—tuning!J
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Clarification on gradient alignment based work

LoRA-GA (Wang et al, 2024): make LoRA's gradients align to full ﬁne—tuning!)
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Takeaway messages: speedup via spectral initialization

A Full fine-tuning
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subspace alignment: G and (A;, B;) = theory-grounded algorithm design
“optimal” non-zero initialization strategy

clarification on gradient alignment based algorithms

spectral initialization enables feature learning...

global convergence on nonlinear models, scaled GD...
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