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How can theory contribute to efficiency in LLMs?
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ABSTRACT

An important paradigm of natural language processing consists of large-scale pre-
training on general domain data and adaptation to particular tasks or domains. As
we pre-train larger models, full fine-tuning, which retrains all model parameters,
becomes less feasible. Using GPT-3 175B as an example – deploying independent
instances of fine-tuned models, each with 175B parameters, is prohibitively expen-
sive. We propose Low-Rank Adaptation, or LoRA, which freezes the pre-trained
model weights and injects trainable rank decomposition matrices into each layer of
the Transformer architecture, greatly reducing the number of trainable parameters
for downstream tasks. Compared to GPT-3 175B fine-tuned with Adam, LoRA
can reduce the number of trainable parameters by a factor of 10,000 and the GPU
memory requirement by a factor of 3. LoRA performs on-par or better than fine-
tuning in model quality on RoBERTa, DeBERTa, GPT-2, and GPT-3, despite hav-
ing fewer trainable parameters, a higher training throughput, and, unlike adapters,
no additional inference latency. We also provide an empirical investigation into
rank-deficiency in language model adaptation, which sheds light on the efficacy of
LoRA. We release a package that facilitates the integration of LoRA with PyTorch
models and provide our implementations and model checkpoints for RoBERTa,
DeBERTa, and GPT-2 at https://github.com/microsoft/LoRA.
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Figure 1: Our reparametriza-
tion. We only train A and B.

Many applications in natural language processing rely on adapt-
ing one large-scale, pre-trained language model to multiple down-
stream applications. Such adaptation is usually done via fine-tuning,
which updates all the parameters of the pre-trained model. The ma-
jor downside of fine-tuning is that the new model contains as many
parameters as in the original model. As larger models are trained
every few months, this changes from a mere “inconvenience” for
GPT-2 (Radford et al., b) or RoBERTa large (Liu et al., 2019) to a
critical deployment challenge for GPT-3 (Brown et al., 2020) with
175 billion trainable parameters.1

Many sought to mitigate this by adapting only some parameters or
learning external modules for new tasks. This way, we only need
to store and load a small number of task-specific parameters in ad-
dition to the pre-trained model for each task, greatly boosting the
operational efficiency when deployed. However, existing techniques
often introduce inference latency (Houlsby et al., 2019; Rebuffi et al., 2017) by extending model
depth or reduce the model’s usable sequence length (Li & Liang, 2021; Lester et al., 2021; Ham-

∗Equal contribution.
1While GPT-3 175B achieves non-trivial performance with few-shot learning, fine-tuning boosts its perfor-

mance significantly as shown in Appendix A.
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W FT = W pre +∆ ∈ Rd×k
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• Formulation:

∆ ≈ AB with A ∈ Rd×r and B ∈ Rr×k

• Initialization:

[A0]ij ∼ N (0, α2) and [B0]ij = 0 .
3



Today’s talk: Improve “sub-optimal” LoRA

How can theory guide practice

• understanding: training dynamics of (At ,Bt)

• design new algorithm -> performance improvement

• clarify some misconceptions in previous algorithm designs

❐ Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

[
At+1

B⊤
t+1

]
=

[
I d ηG
ηG⊤ I k

][
At

B⊤
t

]
+ nonlinear term

{
[A0]ij ∼ N (0, α2)

[B0]ij = 0 .

❐ One-step full gradient: G ∈ Rd×k and rank(G ) = r∗

G := −∇W L(W pre) =
1
N

X̃
⊤
X̃∆ .
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Understanding: Alignment on B t
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Theorem (Alignment between G and Bt , informal)

For the linear setting, LoRA via gradient descent yields

∠(V r∗(Bt),V r∗(G )) = 0 , ∀t ∈ N+ .
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Understanding: Alignment on At
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+ nonlinear term

Theorem (Alignment between G and At , informal)

For small initialization over A0, after t∗ = Θ(ln d) steps, LoRA updates yield

∠(U r∗(At∗),U r∗(G )) is small ,w .h.p.
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Figure 2: Principal angle of fine-tuning T5 on MRPC.

Theorem (Alignment between G and At , informal)

For small initialization over A0, after t∗ = Θ(ln d) steps, LoRA updates yield

∠(U r∗(At∗),U r∗(G )) is small ,w .h.p.
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Algorithm design principle

❐ SVD: G = USV⊤

A0 = U [:,1:r ]S
1
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[1:r ] .
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Key Message: we can “escape” the alignment stage

Under (Spec-init.), for both linear/nonlinear models, we can directly achieve
the alignment at initialization.

∥A0B0 −∆∥F is small,w .h.p.

The “best” initialization strategy!
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“Best” initialization: phase portrait
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One-step gradient can suffice on small-scale datasets!

Dataset MNLI SST-2 CoLA QNLI MRPC
Size 393k 67k 8.5k 105k 3.7k

Pre-trained - 89.79 59.03 49.28 63.48
Spectral init. - 90.48 73.00 76.64 68.38

LoRA8 85.30±0.04 94.04±0.09 72.84±1.25 93.02±0.07 68.38±0.01

Time cost (sec.) LoRA Spectral init.

CoLA 47s <1s
MRPC 25s <1s Pe

rfo
rm

an
ce

Efficiency

Full fine-tuning

(cost more, slower)

Param. efficient
fine-tuning

(cost less, faster)

Is it possible to be here?

speedup 20x!
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Results on LLaMA 2-7B (continue to run)
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Figure 3: Accuracy comparison across different methods over epochs on GSM8K.
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Clarification on gradient alignment based work

LoRA-GA (Wang et al, 2024): make LoRA’s gradients align to full fine-tuning!

❐ best 2r approximation{
rank(∇AL(At ,Bt)) ≤ r

rank(∇BL(At ,Bt)) ≤ r

Method Init. on A Init. on B Calibration

LoRA N (0, α2) 0 -
LoRA-GA U [:,1:r ] V⊤

[:,r+1:2r ] W pre − A0B0

LoRA-One U [:,1:r ]S
1/2
[1:r ] S1/2

[1:r ]V
⊤
[:,1:r ] -
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Takeaway messages: speedup via spectral initialization

Pe
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Efficiency

Full fine-tuning

(cost more, slower)

LoRA

(cost less, faster)

Is it possible to be here?

speedup 20x!

LoRA-One

• subspace alignment: G and (At ,Bt) ⇒ theory-grounded algorithm design
• “optimal” non-zero initialization strategy
• clarification on gradient alignment based algorithms
• spectral initialization enables feature learning...
• global convergence on nonlinear models, scaled GD...
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