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Classical numerical linear algebra: A computational challenge

Motivation:
large-scale numerical linear algebra (NLA): matrix multiplication, linear systems,
low-rank approximation, optimization, etc.
high numerical precision not needed in ML; focus is on reducing computational cost.

Example of over-determined linear system: Ax = b, A ∈ Rn×d and b ∈ Rn

tall data matrix with n ≫ d, numerically challenging.

Data A × x = b

aim to find x ∈ Rd with computational complexity that does not scale rapidly with n.
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Randomized methods for over-determined linear system

Idea: “sketch” the tall A using sketching matrix S ∈ Rm×n to get sketch Ã = SA ∈ Rm×d

with m ≪ n.
then solve the sketched system SAx̃ = Sb (m × d), approximate x̃ ≈ x.

Sketching matrix S × Data A = Sketch Ã
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Some commonly used random sketching techniques

Random sampling: S ∈ Rm×n to randomly sample rows of A ∈ Rn×d

▶ uniform sampling with probability πi = 1/n for all i ∈ {1, . . . , n} rows of A ∈ Rn×d;
▶ importance (so data-aware) sampling based on norm and leverage score (exactly or

approximately) of the rows of A etc.

Leverage score sampling [Mah11]

For A ∈ Rn×d of rank d with n ≥ d, the ith leverage score ℓi of A, is defined as
ℓi = a⊤i (A

⊤A)−1ai, i ∈ {1, . . . , n}. The exact leverage score sampling uses πi = ℓi/d.

▶ In practice, use efficient approximations of the leverage scores, ℓ̃i, and set
πi = ℓ̃i/ ∑n

i=1 ℓ̃i, which gives the approximate leverage score sampling.
Random projection:

▶ Gaussian and/or sub-gaussian projection
▶ Sketched based on random orthonormal systems, e.g., sub-sampled randomized

Hadamard/Fourier transform (SRH/FT) [AC06]
⋆ for SA uniformly sampling the rows of HnDA/

√
n, with diagonal D ∈ Rn×n having i.i.d.

Rademacher ±1 entries, and Hn Hadamard/Fourier matrix of size n, with H⊤
n Hn/n = In
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Statistical guarantee of sketching and its inverse

For a tall data matrix A ∈ Rn×d and its sketch Ã ≡ SA ∈ Rm×d, one generally needs
unbiased sketch with E[Ã⊤Ã] = A⊤A, i.e., E[S⊤S] = In;
Ã⊤Ã ≃ A⊤A in some sense with non-trivial probability for a single realization of S.

(ε, δ)-subspace embedding [DMM06]

A sketch Ã ∈ Rm×d of A ∈ Rn×d satisfies the subspace embedding property with error
ε ∈ (0, 1) if (1 + ε)−1A⊤A ⪯ Ã⊤Ã ⪯ (1 + ε)A⊤A holds with probability at least 1 − δ.

When interested in the inverse (Ã⊤Ã)−1,
by (ε, δ)-subspace embedding, (1 + ε)−1(A⊤A)−1 ⪯ (Ã⊤Ã)−1 ⪯ (1 + ε)(A⊤A)−1,
holds with probability at least 1 − δ;
in general not unbiased E[(Ã⊤Ã)−1] ̸≃ (A⊤A)−1, due to E[1/X] ̸= 1/E[X];
may cause large bias in practice: inaccurate LS, slow convergence in stochastic
optimization, etc.
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Existing work: Inversion bias under random projection

Interested in inversion bias E[(A⊤S⊤SA)−1] for different random sketching S ∈ Rm×n:
Gaussian S: exactly [Haf79] E[(A⊤S⊤SA)−1] = m

m−d−1 (A
⊤A)−1.

however, beyond Gaussian, no known exact expressions for fixed n, d, m.
recall resolvent Q(z) = (A⊤S⊤SA − zId)

−1 in RMT, for S having i.i.d. entries
▶ Sherman–Morrison and leave-one-out are used to approximate/compute E[Q(z)]
▶ take z = 0 if possible

(ε, δ)-unbiased estimator

A random matrix C̃ is an (ε, δ)-unbiased estimator of C if there exists an event ζ holds
with probability at least 1 − δ such that (1 + ε)−1C ⪯ E

[
C̃ | ζ

]
⪯ (1 + ε)C.

Debiasing with non-asymptotic guarantees [Der+21a]:
▶ sub-Gaussian S: for m ≥ Cd, ( m

m−d A⊤S⊤SA)−1 is an (ε, δ)-unbiased estimator of
(A⊤A)−1 with ε = O(

√
d/m).

▶ LEverage Score Sparsified embedding (LESS) S (more efficient): for m ≥ Cd log d,
( m

m−d A⊤S⊤SA)−1 is an (ε, δ)-unbiased estimator of (A⊤A)−1 with ε = O(
√

d/m).
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Direct row sampling

What if we (violently) randomly sample the (rows of) tall data matrix A ∈ Rn×d?
randomly sample m rows from n rows of A with replacement via probabilities
{πi}n

i=1; form Ã = SA and rescale each sampled row by 1/
√

mπi.
very sparse: S ∈ Rm×n have only one nonzero entry per row

Lower bound for leverage score sampling, [Der+21a, Theorem 10]

For any n ≥ 2d ≥ 4, there exists a A ∈ Rn×d and approximate leverage score sampling
matrix S ∈ Rm×n so that for any scaling factor γ, (γA⊤S⊤SA)−1 is NOT an
(ε, δ)-unbiased estimator of (A⊤A)−1 with any ε ≤ cd/m and δ ≤ c(d/m)2, where c > 0 is
an absolute constant.

cannot be de-biased with a simple constant (e.g., m
m−d as for sub-Gaussian and LESS),

at least for some approximate leverage score sampling.
for a win-win for both complexity and statistical property, needs refined analysis to
random sampling, different from projection .
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Fine-grained analysis of inversion bias for random sampling
Derive precise expression of inversion bias for general random sampling

Inversion bias for random sampling, [Niu+25, Theorem 3.1, Proposition 3.2]

Given A ∈ Rn×d of rank d with n ≥ d, let S ∈ Rm×n be a random sampling matrix, and
ρmax ≡ max1≤i≤n ℓi/(πid). Then, there exists C > 0 so that if m ≥ Cρmaxd1+ν, δ ≤ m−3,
and ν ≥ logd(log d/δ),

for diagonal matrix D = diag{Dii}n
i=1 with

Dii=
m

m + a⊤i (A
⊤DA)−1ai/πi

, (1)

(A⊤S⊤SA)−1 is an (ε, δ)-unbiased estimator of (A⊤DA)−1 for ε = O(d−3ν/2).
for the de-biased sampling matrix Š ∈ Rm×n as

Š=diag
{√

m/(m − ℓis /πis)

}m

s=1
· S,

(A⊤Š⊤ŠA)−1 is an (ε, δ)-unbiased estimator of (A⊤A)−1 for ε = O(d−3ν/2).
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Spacial cases for scalar debiasing

Scalar debiasing under approximate leverage, [Niu+25, Corollary 3.4]

For approximate leverage sampling scheme with πi ∈ [ℓi/(dρmax), ℓi/(dρmin)], where
ρmin ≡ min1≤i≤n ℓi/(πid) and ρmax ≡ max1≤i≤n ℓi/(πid), there exists C > 0,
ν ≥ logd(log d/δ), δ < m−3 such that for m ≥ Cρmaxd1+ν, ( m

m−d A⊤S⊤SA)−1 is an
(ε, δ)-unbiased estimator of (A⊤A)−1 with inversion bias ε = O(d−3ν/2 + ερd−ν) and
ερ = max{ρ−1

min − 1, 1 − ρ−1
max}.

Scalar debiasing under SRHT, [Niu+25, Corollary 3.7]
For Sub-sampled randomized Walsh–Hadamard transform (SRHT) of A is given by
ÃSRHT = SHnDnA/

√
n ∈ Rm×n, then there exists C > 0, ν ≥ 0, n exp(−d) < δ < m−3

such that for m ≥ Cρmaxd1+ν, ( m
m−d Ã⊤

SRHTÃSRHT)
−1 is an (ε, δ)-unbiased estimator of

(A⊤A)−1 with inversion bias ε = O(d−3ν/2 + ρ−1
max
√

log(n/δ)d−ν−1/2).
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Application to de-biased sub-sampled Newton

Consider optimization problem: β∗ = arg minβ∈C F(β), for some smooth function
F : Rd → R and C ⊆ Rd a convex set
F has Lipschitz continuous Hessian with Lipschitz constant L, where Ht(βt) ∈ Rd×d

can be decomposed as
Ht(βt) = A(βt)

⊤A(βt), (2)

with A(βt) ∈ Rn×d.
Evaluate the local convergence rate of the following de-biased SSN iterations:

β̌t+1 = β̌t − µt

(
A(β̌t)

⊤Š⊤
t ŠtA(β̌t)

)−1
gt, (3)

with Št = diag
{√

m/(m − ℓis(β̌t)/πis)
}m

s=1
· St and iths leverage score ℓis(β̌t), where

gt ≡ ∇F(β̌t) ∈ Rd the gradient, µt the step size at t.
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Problem independent local convergence rate of de-biased SSN

Local convergence of de-biased SSN, [Niu+25, Theorem 4.3]

For p.d. A(β∗)⊤A(β∗) = ∇2f (β∗), there exists a neighborhood
U = {β : ∥β − β∗∥H < (ρmaxdσmin/m)3/2/L} of β∗ such that the de-biased SSN iteration
starting from β̌0 ∈ U satisfies, step size µt = 1 − ρmax

m/d+ρmax
, m ≥ Cρmaxd1+ν, and

ν ≥ logd(log(dT/δ)) that(
Eζ

[
∥β̌T − β∗∥H

∥β̌0 − β∗∥H

])1/T

≤ ρmaxd
m

(1 + ε), (4)

holds for ε = O(d−ν/2) and conditioned on an event ζ that happens with probability at
least 1 − δ. Here, σmin is the smallest singular value of H ≡ A(β∗)⊤A(β∗), ρmax is the max
approximate factor for ℓi = max1≤t≤T ℓi(β̌t) with ℓi(β̌t) the leverage scores of A(β̌t).
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Numerical results
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The proposed de-biased SSN-ARLev offers the best convergence–complexity
trade-off, outperforms Newton-LESS and first-order baselines.
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Takeaway

Contributions bridging connection bewtion RMT and RandNLA:
▶ propose de-biased sampling (with replacement)

Š=diag
{√

m/(m − ℓis /πis)

}m

s=1
· S,

such that E[(A⊤Š⊤ŠA)−1] ≃ (A⊤A)−1;
▶ applying de-biased Š to sub-sampled Newton (SSN), to establish the first

problem-independent local convergence rates.

Future work1:
▶ extend debiasing to block-wise sampling (with/without replacement);
▶ improve SSN convergence by ensuring unbiasedness and minimizing variance.

1Chengmei Niu, Zhenyu Liao. “Debiasing Distributed Subsampled Newton via A-Optimal Block Subsampling”.
Manuscript in preparation, 2025.
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Thank you!

Thank you!

For further discussion or questions, feel free to reach out to the authors via email:

Chengmei Niu: chengmeiniu@hust.edu.cn
Zhenyu Liao: zhenyu_liao@hust.edu.cn
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