Layer by Layer

Uncovering Hidden Representations in Language Models

Presented by: Oscar Skean

UCLA

Md Rifat Arefin

♥ NYU

Yann LeCun

Ravid Shwartz-Ziv

Overview of the Work

- Our work challenges common assumptions in modern ML folklore
 - X Myth 1: Final layers always give the best embeddings
 - X Myth 2: Middle layers are useless for downstream tasks

• Reality: Intermediate layers often outperform final layers

Overview of the Work

Embeddings of intermediate layers outperform final layers on downstream tasks

• Rigorous empirical testing across model architectures, scales, tasks, and modalities

• Theoretical toolkit of evaluation metrics to explain internal phenomena and explore why intermediate layers are strong

Evaluate Intermediate Layers Performance

- MTEB Benchmark:
 - SoTA benchmark (Muennighoff et al., 2022)
 - Used 32 diverse tasks spanning 5 different domains
 - Probed every model layer

• Goal: Find which layers create the best embeddings

Middle Layers Win

Peak performance occurs at intermediate depth, not at the final layer

Our Experimental Pipeline

Choose evaluation metric

Information-Theoretic

- Prompt Entropy
- · Dataset Entropy

Augmentation Invariance

- DiME
- LiDAR
- infoNCE

Geometric

Curvature

The Metrics Zoo: Three Ways to Evaluate Hidden Representations

Information-Theoretic

How much data is preserved?

Augmentation Invariance

How stable are the representations?

Curvature

What is the shape of the data?

The Metrics Zoo: Three Ways to Evaluate Hidden Representations

Information-Theoretic

How much data is preserved?

Augmentation Invariance

How stable are the representations?

Curvature

What is the shape of the data?

Prompt Entropy, an information-theoretic metric, is a central link

Prompt Entropy

Captures the compression level of representations

For any layer, measure the "effective rank" of the DxD token covariance matrix Σ

$$R(\Sigma) = -\sum_{i=1}^{\min(N,D)} \lambda_i \log \lambda_i$$

High entropy

- high rank
- tokens are very spread out
- a lot of information

Low entropy

- tokens are very compressed

Layerwise Prompt Entropy across Architectures

Model architecture and pretext task influence internal behavior

Autoregressive models exhibit a strong intermediate bottleneck

The Bottleneck Emerges During Training

Models learn to compress information as training progresses

Bigger Models = Stronger Compression

Larger models create deeper bottlenecks

Low Entropy = High Performance in Autoregressive Transformers

Correlations in autoregressive transformer models

Downstream Task Performance (Supervised)

Free Performance Boost: No Training Required

• The Problem: Need better embeddings, but no labeled data

• The Solution: Find minimum entropy layer

• The Result: 5-10% performance improvement with no additional training

Does This Work Beyond Language Models?

- Vision domain offers a rich selection of models trained on many pretext tasks
 - SimCLR, JEPA, MAE, DINO, supervised models, etc...

- Checked this modality to see:
 - if our findings hold across domains
 - how pretext tasks affect the internal representations

Autoregressive Vision Models Show Same Pattern

- AIMv1 (autoregressive) peaks in middle layers, others don't
- Autoregressive training creates beneficial bottlenecks across modalities

ImageNet Val@1 Attention Probing Val@1 6 9 20 20 25 10 15 Layer

Key Benefits

• Performance Boost - Better embeddings with one line of code

Inference Time - Less layers = less inference time

• Understanding - Better understanding of internal model behavior

• Followup Work - Seq-VCR (Arefin, et. al 2025) improved GSM8k math reasoning

Take Action: Check Your Middle Layers Today

- Try model.from_pretrained(output_hidden_states = True)
- Test layers 20-70% for your tasks
- Measure prompt entropy to find best layers for autoregressive transformers

Thanks for listening!

oscar.skean@uky.edu

Poster today from 11am – 1:30pm at East Exhibition Hall A-B #E-2607

Questions?

