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Overview of the Work

* Our work challenges common assumptions in modern ML folklore
X Myth 1: Final layers always give the best embeddings
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X Myth 2: Middle layers are useless for downstream tasks

« & Reality : Intermediate layers often outperform final layers
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Overview of the Work

* Embeddings of intermediate layers outperform final layers on downstream tasks
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* Rigorous empirical testing across model architectures, scales, tasks, and modalities

* Theoretical toolkit of evaluation metrics to explain internal phenomena and explore
why intermediate layers are strong
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Evaluate Intermediate Layers Performance

e MTEB Benchmark:
e SoTA benchmark (Muennighoff et al., 2022) '~
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e Used 32 diverse tasks spanning 5 different domains

* Probed every model layer

* Goal: Find which layers create the best embeddings
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Middle Layers Win
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Peak performance occurs at intermediate depth, not at the final layer
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Our Experimental Pipeline 0
E
: (L .
Token 1
'l" at Layer k JT’ I:
The weather s Token2 =™ Layer1 |, (Represeniaion2) | Laver k
nice today and 5 through at Layer k through
| Layer k l l end
N Representation N
. Token N —_ JP at Layer k ‘T’\ )
N an e e
v
Choose evaluation metric
r ) < N\ r )
| ion.T} : Aug . . - :
« Prompt Entropy « DIME « Curvature
« Dataset Entropy « LIDAR
« infoNCE
X i % ) X /

[ . % Unlver51tyof
... Department of Computer Science 7/14/2025 | 7 Kentucky:.




The Metrics Zoo: Three Ways to Evaluate Hidden Representations
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Information-Theoretic

How much data is
preserved?
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Augmentation Invariance

How stable are the
representations?
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of the data?

\- /

7/15/2025 8

i " n "

% University of
Kentucky:.



The Metrics Zoo: Three Ways to Evaluate Hidden Representations
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[ Prompt Entropy, an information-theoretic metric, is a central link
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Prompt Entropy

Captures the compression level of representations
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For any layer, measure the “effective rank” of the DxD token covariance matrix 2

R(E)= - )  Xlogh,

High entropy
- high rank
- tokens are very spread out
- a lot of information

Low entropy
- tokens are very compressed
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Layerwise Prompt Entropy across Architectures
x10~1
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Model architecture and pretext task influence internal behavior

Autoregressive models exhibit a strong intermediate bottleneck
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The Bottleneck Emerges During Training

Prompt Entropy
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Models learn to compress information as training progresses
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Bigger Models = Stronger Compression
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Larger models create deeper bottlenecks
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Low Entropy = High Performance in Autoregressive Transformers
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Entropy (unsupervised) Downstream Task Performance (Supervised)
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Free Performance Boost: No Training Required

 The Problem: Need better embeddings, but no labeled data
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* The Solution: Find minimum entropy layer

* The Result: 5-10% performance improvement with no additional training
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Does This Work Beyond Language Models?

* Vision domain offers a rich selection of models trained on many pretext tasks
* SimCLR, JEPA, MAE, DINO, supervised models, etc...
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* Checked this modality to see:
e if our findings hold across domains
* how pretext tasks affect the internal representations
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Autoregressive Vision Models Show Same Pattern

 AIMv1 (autoregressive) peaks in middle layers, others don’t
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e Autoregressive training creates beneficial bottlenecks across modalities
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Key Benefits

Performance Boost - Better embeddings with one line of code
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Inference Time - Less layers = less inference time

Understanding - Better understanding of internal model behavior

Followup Work - Seg-VCR (Arefin, et. al 2025) improved GSM8k math reasoning
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Take Action: Check Your Middle Layers Today

* Try model.from_pretrained(output_hidden states = True)
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e Test layers 20-70% for your tasks

 Measure prompt entropy to find best layers for autoregressive transformers
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Thanks for listening!
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oscar.skean@uky.edu

Poster today from 11lam —1:30pm at East Exhibition Hall A-B #E-2607

Questions?
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