

Foundation Model Insights and a Multi-Model Approach for Superior Fine-Grained One-shot Subset Selection

Zhijing Wan

Zhixiang Wang

Zheng Wang

Xin Xu

Shin'ichi Satoh

Data Explosion Fuels Deep Learning

Dataset size V.S. ImageNet Error Rate [1]

More Data ≠ Better

Dataset size V.S. ImageNet Error Rate [1]

More Data ≠ Better

Storage Computation Annotation

Cost

Cost

Subset Selection: Balancing Data Volume and Quality

Goal: Identify the most informative samples to enable *efficient* training without significantly compromising model performance.

Subset Selection: Balancing Data Volume and Quality

Goal: Identify the most informative samples to enable *efficient* training without significantly compromising model performance.

60% selected data yields comparable performance to full-data training on CIFAR-10 [1]

Subset Selection: Two Main Paradigms

Subset S_i , parameters θ_i

(a) Adaptive Subset Selection

[Karanam et al., 2022; Killamsetty et al., 2022]

Subset Selection:

$$S_i = S(\theta_i),$$

where $S(\theta_i)$ is a subset selection function depending on current model parameters.

Target Model Update:

$$\theta_{i+1} = \theta_i - \eta \nabla_{\theta} f(\theta_i; S_i)$$

Feedback Loop:

$$\theta_0 \to S_0 \to \dots \to \theta_i \to S_i \to \theta_{i+1} \to S_{i+1} \to \dots$$
 until the target model training converges.

(b) One-shot Subset Selection

[Xia et al., 2024; Yang et al., 2024]

Subset Selection:

$$S_0 = \mathcal{S}(\theta_{\text{pre-trained}}),$$

where $S(\theta_{pre-trained})$ is a subset selection function based on a pre-trained model parameters.

Target Model Training: $\theta^* = \arg\min f(\theta; S_0)$

$$\theta^* = \arg\min_{\theta} f(\theta; S_0)$$

No feedback loop

Subset Selection: Two Main Paradigms

(a) Adaptive Subset Selection

[Karanam et al., 2022; Killamsetty et al., 2022]

Iterative selection

- X High selection cost and time-consuming
- X Requires full-dataset access

One-shot Subset Selection: Existing Pipeline and Challenge

One-shot Subset Selection: Existing Pipeline and Challenge

One-shot Subset Selection: Existing Pipeline and Challenge

Key Challenge with Existing Pipeline:

- Dataset-dependent: tightly coupled with the full training set.
 - Training set **updated** → **pretrain again**, **wasteful**;
 - Expensive and impractical for evolving and large-scale datasets.

Full training sot

Key Advantage of Foundation Models:

Inform Extract

- Strong generalization across domains and distributions.
 - No task-specific pretraining required;

Selec

- Eliminate dataset dependency in subset selection;
- Scalable & practical for large, diverse, or evolving data.

Subset

FM-based Subset Selection: Limitations

Problems with Existing FM-based Subset Selection:

Full train

Inform Extract

Sele

Sul

Existing Research	Real-World Challenges		
IE: A single FM (i.e., DINO)	A spectrum of FMs		
Perfect task datasets:Mainly coarse-grainedClean labelsClass balance	Not perfect task datasets:Fine-grainedNoisy labelsClass imbalance		

Question

Can FM-based subset selection truly outperform traditional IE-based methods across diverse datasets?

Subset

*See paper for details

• 5 datasets × 3 types of IEs × 4 selection methods × 3 sampling rates

*See paper for details

• 5 datasets × 3 types of IEs × 4 selection methods × 3 sampling rates

*See paper for details

• 5 datasets × 3 types of IEs × 4 selection methods × 3 sampling rates

*See paper for details

• 5 datasets × 3 types of IEs × 4 selection methods × 3 sampling rates

Feature-based subset selection methods

- Graph Cut (GC) [1]
- K-Center Greedy (KCG) [2]
- Moderate_DS (MDS) [3]
- MIN

^[1] Iyer, R., and et al. Submodular combinatorial information measures with applications in machine learning. In Algorithmic Learning Theory. PMLR 2021.

^[2] Sener, O., and et al. Active learning for convolutional neural networks: A core-set approach. ICLR 2018.

^[3] Xia, X., et al. Moderate coreset: A universal method of data selection for real-world data-efficient deep learning. ICLR, 2023.

*See paper for details

• 5 datasets × 3 types of IEs × 4 selection methods × 3 sampling rates

Sampling rates

- 10%
- 30%
- 50%

Single-Model Study: FM ≠ Always Better

(a) Subset selection on CIFAR-10

(b) Subset selection on CIFAR-10N-Worse (CIFAR-10N)

(c) Subset selection on CIFAR-10-imbalance (CIFAR-10I)

(d) Subset selection on Oxford-IIIT Pet (Pet)

(e) Subset selection on Oxford-IIIT Pet with 20% symmetric label noise

FMs do not always outperform traditional IEs.

Single-Model Study

Best Extractor Frequency, capturing how consistently an extractor is preferred

Single-Model Study

Best Extractor Frequency, capturing how consistently an extractor is preferred

- The single FM is preferred in only 4 out of 12 settings on CIFAR-10N, highlighting that **its advantage on noisy, coarse-grained data is limited and unstable**.
- On datasets like CIFAR-10, CIFAR-10I, Pet, and Pet-N, the single FM is consistently preferred over traditional IEs, with up to 9 out of 12 settings on the fine-grained datasets.

Single-Model Study

Performance Dominance, examining which extractor achieves the best result at each sampling rate and their peak performance potential

- CIFAR-10: X No Single FM wins (any rate)
- CIFAR-10I: Single FM wins at 30%, 50%; at 10%
- Pet / Pet-N:
 Single FM wins at all sampling rates

Single-Model Study: When Do FMs Help Subset Selection?

- FMs significantly and consistently outperform traditional IEs for subset selection on fine-grained datasets (both clean and noisy).
- In contrast, FMs show limited or unstable advantages on coarse-grained datasets—especially when noisy labels are present, as in CIFAR-10N.

Single-Model Study: Not All FMs Perform Equally Well As IE

Observation 3: Different FMs perform differently for subset selection, and the superior performance of FMs on downstream classification does not guarantee better subset selection effects.

Single-Model Study:

Question

Can we combine the strengths of multiple FMs to explore the boundary of FM-based subset selection on fine-grained datasets?

Proposed Method: Multi-FM-based Subset Selection

Conventional feature-based Subset Selection

Proposed Method: RAM-APL

• RAM (RAnking Mean):

- Aligns features from different FMs by mapping them into a unified distance ranking space;
- Measures sample representativeness by averaging a sample's intra-class distance rank across multiple FMs.

• APL (Accuracy of Pseudo Labels):

- Aligns features from different FMs by mapping them into a shared pseudo-label confidence space;
- Averages pseudo-label accuracy across FMs to capture inter-class ambiguity.
- RAM-APL: A unified strategy that jointly evaluates representativeness (intra-class) and hardness (inter-class) by leveraging diverse FM perspectives.

Experimental Results: Comparison with Baselines

• Our method outperformed all 12 subset selection baselines at each sampling rate.

Experimental Results

Table. Comparison of the performance of our method using different numbers of foundation models as information extractors. Here, "D", "C", "S" and "E" represent DINOv2, CLIP, SigLIP, EVA-CLIP, respectively.

• Combining multiple FMs can yield better overall performance than any single model.

Experimental Results

Table. Comparison of the performance of our method using different numbers of foundation models as information extractors. Here, "D", "C", "S" and "E" represent DINOv2, CLIP, SigLIP, EVA-CLIP, respectively.

IE				Sampling rates					
D	C	S	Е	1%	10%	30%	50%	70%	Overall Mean
•	0	0	0	5.9±0.3	15.4±1.1	31.6±2.3	47.7±1.1	57.9±4.1	158.5
0	•	0	0	5.7±0.4	15.0 ± 0.2	27.9 ± 1.2	43.6 ± 1.9	57.0 ± 0.4	149.2
0	0	•	0	6.6 ± 0.3	14.1 ± 1.0	28.8 ± 1.1	43.9 ± 1.7	55.1 ± 2.6	148.5
0	0	0	•	5.4 ± 0.3	15.0 ± 0.6	30.2 ± 2.5	44.4 ± 2.3	56.6 ± 1.8	151.6
•	•	0	0	6.5 ± 0.4	15.2±1.2	32.4±2.9	47.5±1.9	58.7±2.2	160.3
•	0	•	0	5.9 ± 0.3	16.2 ± 0.1	31.4 ± 3.2	45.0±1.3	58.6 ± 1.2	157.1
•	0	0	•	6.0 ± 0.6	16.0 ± 0.9	35.8±2.9	46.5 ± 1.8	54.9 ± 3.5	159.3
0	•	•	0	6.4 ± 0.2	15.1 ± 0.4	29.8 ± 1.6	45.9 ± 1.3	56.2 ± 2.7	153.4
0	•	0	•	5.9 ± 0.3	15.5 ± 0.7	31.4 ± 1.7	44.2 ± 2.2	55.9 ± 1.8	152.9
0	0	•	•	6.7±0.4	16.2 ± 0.6	34.7 ± 0.3	45.7 ± 0.8	56.6 ± 2.4	159.9
•	•	•	0	6.2 ± 0.8	15.6 ± 0.5	33.2 ± 1.4	48.3 ± 1.1	57.6 ± 0.1	160.9
•	•	0	•	6.0 ± 0.4	17.5 ± 1.0	35.2 ± 1.8	47.9 ± 1.5	55.6 ± 2.1	162.2
•	0	•	•	6.1 ± 0.3	16.8 ± 0.6	34.4 ± 2.1	47.0 ± 2.0	55.1 ± 1.6	159.4
0	•	•	•	6.1 ± 0.2	16.1 ± 0.3	33.9 ± 1.4	46.8 ± 1.5	55.1 ± 0.5	158.0
•	•	•	•	6.5±0.2	16.8±1.1	34.0±2.7	46.3±0.5	56.9±1.1	160.5

• DINOv2+CLIP achieves the best trade-off between efficiency and accuracy (**Our default setting**);

Takeaways

- This work conducts, for the first time, a comprehensive analysis of the strengths and limitations of foundation models versus traditional information extractors (IEs) in subset selection. We find that
 - 1. Foundation models consistently outperform traditional IEs on fine grained datasets;
 - 2. This advantage diminishes particularly on coarse-grained datasets with noisy labels.
- The multi-FM-based subset selection method RAM-APL outperforms all baselines under different subset rates.

Thank you so much for listening!

Visit our poster at East Exhibition Hall A-B #E-1912

More details, please email wanzjwhu@whu.edu.cn

Paper

Github

