An analytic theory of creativity in convolutional diffusion models

Mason Kamb¹, Surya Ganguli ¹
Applied Physics, Stanford University
July 15, 2025

What is the origin of combinatorial 'creativity' in diffusion models?

- Models regularly create entirely novel images that combine of features from their training data, mixing and matching without purely memorizing.
- These combinations are **novel**, yet still qualitatively consistent with their training data.
- We'd like to find an analytic theory that makes these properties manifest.

'Consistency' is famously not guaranteed!

Everyone: Al art will make designers obsolete
Al accepting the job:

 $\mathsf{arXiv}{:}2404.05384,\ \mathsf{arXiv}{:}2403.10731,\ \mathsf{arxiv}{:}2403.10731v2$

- ▶ Diffusion models are notorious for spatial consistency issues—incorrect numbers of fingers, incorrect limb placement, etc.
- ► Creativity and inconsistency are on a spectrum; in the models we study, we find that the same mechanism predicts both phenomena.

Suppose we have a distribution π_0 we would like to sample from. We can take samples $x_0 \sim \pi_0$ and 'corrupt' them by interpolating them with white noise $\eta \sim N(0, I)$:

$$\phi_t = \sqrt{\bar{\alpha}_t}\phi_0 + \sqrt{1 - \bar{\alpha}_t}\eta$$

▶ Solution to an OU process (the forward process):

$$d\phi_t = -\gamma_t \phi_t + \sqrt{2\gamma_t} \, dW_t$$

► Reverse process (DDIM):

$$\frac{d\phi_t}{dt} = -\gamma_t (\nabla \log \pi_t(\phi_t) + \phi_t)$$

► Tweedie's Theorem:

$$\mathbb{E}[\eta|\phi_t] \propto \nabla \log \pi_t$$

► To learn the score, we train a neural network $M_{\theta}(\phi, t)$ with the objective of guessing the noise from the

$$\mathcal{L}(\theta) = \mathbb{E}_{\phi_t \sim \pi_t, \eta \sim N(0, I)}[\|\eta - M_{\theta}(\phi_t, t)\|^2]$$

- Problem: reverse process exactly reverses the forward process; as $t \to 0$, we recover a sum of delta functions on the training data!
- ▶ In other words, *ideal diffusion models memorize*. The phenomenon of combinatorial creativity *must* emerge because the neural network has *underfit* its training objective!
- ➤ To understand why diffusion models are successful, we need to understand the **implicit biases and constraints** that prevent the model from minimizing its objective, and understand **what it learns instead**.

Simplest realistic diffusion model: fully convolutional neural network

Most commonly used architecture for diffusion models is based on a UNet+self-attention; we study the stripped-down version (no self-attention)

Inductive biases of CNNs

In general CNNs can be arbitrarily expressive, except for the following two constraints:

- ► Translational equivariance: applying the model to a translated version of an input image results in an equally translated output.
- ➤ Locality: the convolutional filters used are typically very narrow. For a finite-depth network, this means that only the pixels in a *local region* around the pixel can be used to estimate the noise. (Also, emergent locality bias— see later!)

What is the optimal denoiser under these constraints?

Bayes-Optimal Denoising under Locality and Equivariance

▶ The *ideal* score function can be written as a linear combination of the displacement from each training sample, times a *global* Bayes weight for each data point:

$$\begin{split} M_t(\phi, \mathbf{x}) &\propto \sum_{\varphi \in \mathcal{D}} \underbrace{\left(\phi(\mathbf{x}) - \sqrt{\bar{\alpha}_t} \varphi(\mathbf{x})\right)}_{\text{added noise}} &\quad \underbrace{P(\varphi|\phi)}_{\text{Bayes weight}} \\ P(\varphi|\phi) &= \frac{\mathcal{N}(\phi|\sqrt{\bar{\alpha}_t} \varphi, (1-\bar{\alpha}_t)I)}{\sum_{\varphi'} \mathcal{N}(\phi|\sqrt{\bar{\alpha}_t} \varphi', (1-\bar{\alpha}_t)I)} \end{split}$$

Bayes-Optimal Denoising under Locality and Equivariance

▶ The ideal local denoiser (LS): each pixel x has its own belief state about which image it came from, based only on the information in its local neighborhood Ω_x .

$$M_t(\phi,x) \propto \sum_{\varphi \in \mathcal{D}} \underbrace{\left(\phi(x) - \sqrt{\overline{\alpha}_t}\varphi(x)\right)}_{ ext{added noise}} \underbrace{P(\varphi|\phi_{\Omega_x})}_{ ext{local Bayes weight}}$$

The ideal equivariant, local approximation to the score (ELS): dataset augmented with all possible translations of the original dataset.

$$M_t(\phi,x) \propto \sum_{\substack{\varphi \in G(\mathcal{D}) \text{ sum over data} + \text{ translations}}} \underbrace{(\phi(x) - \sqrt{\bar{\alpha}_t}\varphi(x))}_{\text{added noise}} \underbrace{P(\varphi|\phi_{\Omega x})}_{\text{local Bayes weight}}$$

Denoising under locality + equivariance

Combinatorial creativity from the locality constraint

- ▶ Key takeaway: under *local* denoising, each individual pixel is drawn towards the patch in the training dataset that it most believes it came from ⇒ automatically mixing and matching the training data in different parts of the image while retaining local consistency.
- ► This is the *key mechanism that underpins combinatorial creativity* in convolutional diffusion models.

So... does it work?

- Trained two architectures...
 - ► 6-layer ResNet with 3 × 3 convolutional filters.
 - 3-scale UNet.
- ...on four standard small image datasets:
 - MNIST
 - FashionMNIST
 - CIFAR10
 - CelebA
- We compared outputs of theoretical model to outputs of trained diffusion models given identical noise inputs.

Results

(a) Theory (left) vs. ResNet (right)

(b) Theory (left) vs. UNet (right)

More Results: MNIST

Figure: Left Columns: Theory, Right Columns: Neural Network.

More Results: FashionMNIST

Figure: Left Columns: Theory, Right Columns: Neural Network.

More Results: CIFAR10

Figure: Left Columns: Theory, Right Columns: Neural Network.

More Results: CelebA

Figure: Left Columns: Theory, Right Columns: Neural Network.

Results

Arch.	Padding	Conditional	ELS Corr.	LS Corr.	IS Corr.	(E)LS > IS %
UNet	Zeros	Х	0.89	0.88	0.70	0.93
UNet	Zeros	✓	0.90	0.87	0.41	0.92
UNet	Zeros	✓	0.93	0.93	0.80	1.00
UNet	Zeros	X	0.85	0.90	0.55	1.00
ResNet	Zeros	Х	0.94	0.82	0.61	1.00
ResNet	Circular	×	0.77	0.36	0.15	0.92
ResNet	Zeros	✓	0.95	0.90	0.42	1.00
ResNet	Circular	✓	0.94	0.83	0.35	1.00
ResNet	Zeros	✓	0.94	0.88	0.68	1.00
ResNet	Zeros	X	0.96	0.90	0.47	1.00
	UNet UNet UNet UNet ResNet ResNet ResNet ResNet ResNet	UNet Zeros UNet Zeros UNet Zeros UNet Zeros UNet Zeros ResNet Zeros ResNet Circular ResNet Zeros ResNet Circular ResNet Zeros	UNet Zeros X UNet Zeros ✓ UNet Zeros ✓ UNet Zeros X ResNet Zeros X ResNet Circular X ResNet Zeros ✓ ResNet Zeros ✓ ResNet Zeros ✓	UNet Zeros	UNet Zeros	UNet Zeros X 0.89 0.88 0.70 UNet Zeros ✓ 0.90 0.87 0.41 UNet Zeros ✓ 0.93 0.93 0.80 UNet Zeros X 0.85 0.90 0.55 ResNet Zeros X 0.94 0.82 0.61 ResNet Circular X 0.77 0.36 0.15 ResNet Zeros ✓ 0.95 0.90 0.42 ResNet Circular ✓ 0.94 0.83 0.35 ResNet Zeros ✓ 0.94 0.88 0.68

Figure: Median pixelwise ELS/CNN r^2 values.

Theory predicts spatial consistency issues!

- FashionMNIST results display interpretable issues with extra limbs, predictable by theory and attributable to excess locality.
- Mechanism: for overly small locality scales, a given pixel can't tell whether there are too many or too few limbs in the image.

Multiscale behavior and the curse of dimensionality

Figure: Left: empirical receptive fields at different times in the reverse process. Middle: Optimal scales across models and datasets. Right: schematic depiction of time-dependent locality scale.

► The best-fit locality scale is large at high noise levels and monotonically decreases through the reverse process.

Multiscale behavior and the curse of dimensionality

- ▶ In high dimensions data are very far apart, meaning that memorization onsets at relatively high noise.
- By continuously projecting to lower dimensions as the noise level is reduced, the model stays above the memorization threshold throughout the reverse process.

Attention-enabled models

▶ In practice, our theory is also moderately predictive $(r^2 \sim 0.77)$ of Attention-enabled models!

Figure: Attention-enabled UNet/ELS comparisons. Top image in pair is NN, bottom is ELS.

Defects in SA-enabled models

Attention-enabled models exhibit better spatial consistency, but occasionally fail in ways aligned with ELS. Suggestive of larger role for locality in explaining aberrant behaviors of large models.

Figure: Left: ELS Theory and an Attention-enabled UNet (UNet+SA) output on the same seed. The UNet+SA output is recognizable as a dog but has three eyes; the position of the eyes is aligned with features in the ELS output. Right: an analogous defective output from a much larger model.

Closing thoughts

- We've been able to get a theory that is remarkably predictive for the behavior of inattentive CNN-based diffusion models on small datasets, which crucially exhibits combinatorial creativity by default.
- Highest level of theory/experiment agreement for any deep neural network based generative model.
- ▶ Although the setting we study is restrictive, the answers we arrive at suggest a conceptual picture that could generalize to more complex models.

Going deeper II: borders

- Exact translational invariance is broken by image borders.
- If a pixel can see a border inside its receptive field, it can infer information about its location.
- ▶ Resolution: in the noise estimate, include only those patches consistent with observed border information.

Going deeper II: borders

Figure: Left: Fully Equivariant CNN/ELS comparison. Right: boundary-sensitive CNN/ELS comparison.

Going deeper II: borders

Border-broken equivariance prescription works for both ResNets and UNets most of the time. However, CelebA UNets fully break equivariance, while still keeping locality.

Figure: Comparison between CelebA outputs for ELS, ResNet, LS, and UNet.