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What is the origin of combinatorial ‘creativity’ in diffusion
models?

▶ Models regularly create
entirely novel images that
combine of features from
their training data, mixing
and matching without
purely memorizing.

▶ These combinations are
novel, yet still qualitatively
consistent with their
training data.

▶ We’d like to find an
analytic theory that makes
these properties manifest.
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‘Consistency’ is famously not guaranteed!

arXiv:2404.05384, arXiv:2403.10731, arxiv:2403.10731v2

▶ Diffusion models are notorious for spatial consistency issues–
incorrect numbers of fingers, incorrect limb placement, etc.

▶ Creativity and inconsistency are on a spectrum; in the models we
study, we find that the same mechanism predicts both phenomena.



Diffusion Models

▶ Suppose we have a distribution π0 we would like to sample from.
We can take samples x0 ∼ π0 and ‘corrupt’ them by interpolating
them with white noise η ∼ N(0, I ):

ϕt =
√
ᾱtϕ0 +

√
1− ᾱtη

▶ Solution to an OU process (the forward process):

dϕt = −γtϕt +
√
2γt dWt



Diffusion Models

▶ Reverse process (DDIM):

dϕt

dt
= −γt(∇ log πt(ϕt) + ϕt)



Diffusion Models

▶ Tweedie’s Theorem:

E[η|ϕt ] ∝ ∇ log πt

▶ To learn the score, we train a neural network Mθ(ϕ, t) with the
objective of guessing the noise from the

L(θ) = Eϕt∼πt ,η∼N(0,I )[∥η −Mθ(ϕt , t)∥2]



Diffusion Models

▶ Problem: reverse process exactly reverses the forward process; as
t → 0, we recover a sum of delta functions on the training data!

▶ In other words, ideal diffusion models memorize. The phenomenon
of combinatorial creativity must emerge because the neural network
has underfit its training objective!

▶ To understand why diffusion models are successful, we need to
understand the implicit biases and constraints that prevent the
model from minimizing its objective, and understand what it learns
instead.



Simplest realistic diffusion model: fully convolutional
neural network

Most commonly used architecture for diffusion models is based on a
UNet+self-attention; we study the stripped-down version (no
self-attention)



Inductive biases of CNNs

In general CNNs can be arbitrarily expressive, except for the following
two constraints:

▶ Translational equivariance: applying the model to a translated
version of an input image results in an equally translated output.

▶ Locality: the convolutional filters used are typically very narrow.
For a finite-depth network, this means that only the pixels in a local
region around the pixel can be used to estimate the noise. (Also,
emergent locality bias– see later!)

What is the optimal denoiser under these constraints?



Bayes-Optimal Denoising under Locality and Equivariance

▶ The ideal score function can be written as a linear combination of
the displacement from each training sample, times a global Bayes
weight for each data point:

Mt(ϕ, x) ∝
∑
φ∈D︸︷︷︸

sum over data

(ϕ(x)−
√
ᾱtφ(x))︸ ︷︷ ︸

added noise

P(φ|ϕ)︸ ︷︷ ︸
Bayes weight

P(φ|ϕ) = N (ϕ|
√
ᾱtφ, (1− ᾱt)I )∑

φ′ N (ϕ|
√
ᾱtφ′, (1− ᾱt)I )



Bayes-Optimal Denoising under Locality and Equivariance

▶ The ideal local denoiser (LS): each pixel x has its own belief state
about which image it came from, based only on the information in
its local neighborhood Ωx .

Mt(ϕ, x) ∝
∑
φ∈D︸︷︷︸

sum over data

(ϕ(x)−
√
ᾱtφ(x))︸ ︷︷ ︸

added noise

P(φ|ϕΩx )︸ ︷︷ ︸
local Bayes weight

▶ The ideal equivariant, local approximation to the score (ELS):
dataset augmented with all possible translations of the original
dataset.

Mt(ϕ, x) ∝
∑

φ∈G(D)︸ ︷︷ ︸
sum over data + translations

(ϕ(x)−
√
ᾱtφ(x))︸ ︷︷ ︸

added noise

P(φ|ϕΩx)︸ ︷︷ ︸
local Bayes weight



Denoising under locality + equivariance



Combinatorial creativity from the locality constraint

▶ Key takeaway: under local denoising, each individual pixel is
drawn towards the patch in the training dataset that it most
believes it came from =⇒ automatically mixing and matching
the training data in different parts of the image while
retaining local consistency.

▶ This is the key mechanism that underpins combinatorial creativity
in convolutional diffusion models.



So. . . does it work?

▶ Trained two architectures. . .
▶ 6-layer ResNet with 3× 3 convolutional filters.
▶ 3-scale UNet.

▶ . . . on four standard small image datasets:
▶ MNIST
▶ FashionMNIST
▶ CIFAR10
▶ CelebA

▶ We compared outputs of theoretical model to outputs of
trained diffusion models given identical noise inputs.



Results



More Results: MNIST

Figure: Left Columns: Theory, Right Columns: Neural Network.



More Results: FashionMNIST

Figure: Left Columns: Theory, Right Columns: Neural Network.



More Results: CIFAR10

Figure: Left Columns: Theory, Right Columns: Neural Network.



More Results: CelebA

Figure: Left Columns: Theory, Right Columns: Neural Network.



Results

Figure: Median pixelwise ELS/CNN r2 values.



Theory predicts spatial consistency issues!

▶ FashionMNIST results display interpretable issues with extra limbs,
predictable by theory and attributable to excess locality.

▶ Mechanism: for overly small locality scales, a given pixel can’t tell
whether there are too many or too few limbs in the image.



Multiscale behavior and the curse of dimensionality

Figure: Left: empirical receptive fields at different times in the reverse
process. Middle: Optimal scales across models and datasets. Right:
schematic depiction of time-dependent locality scale.

▶ The best-fit locality scale is large at high noise levels and
monotonically decreases through the reverse process.



Multiscale behavior and the curse of dimensionality

▶ In high dimensions data are very far apart, meaning that
memorization onsets at relatively high noise.

▶ By continuously projecting to lower dimensions as the noise level is
reduced, the model stays above the memorization threshold
throughout the reverse process.



Attention-enabled models
▶ In practice, our theory is also moderately predictive (r2 ∼ 0.77) of

Attention-enabled models!

Figure: Attention-enabled UNet/ELS comparisons. Top image in
pair is NN, bottom is ELS.



Defects in SA-enabled models

▶ Attention-enabled models exhibit better spatial consistency, but
occasionally fail in ways aligned with ELS. Suggestive of larger role
for locality in explaining aberrant behaviors of large models.

Figure: Left: ELS Theory and an Attention-enabled UNet (UNet+SA)
output on the same seed. The UNet+SA output is recognizable as a dog
but has three eyes; the position of the eyes is aligned with features in the
ELS output. Right: an analogous defective output from a much larger
model.



Closing thoughts

▶ We’ve been able to get a theory that is remarkably predictive for the
behavior of inattentive CNN-based diffusion models on small
datasets, which crucially exhibits combinatorial creativity by
default.

▶ Highest level of theory/experiment agreement for any deep neural
network based generative model.

▶ Although the setting we study is restrictive, the answers we arrive at
suggest a conceptual picture that could generalize to more complex
models.



Going deeper II: borders

▶ Exact translational invariance is broken by image borders.

▶ If a pixel can see a border inside its receptive field, it can infer
information about its location.

▶ Resolution: in the noise estimate, include only those patches
consistent with observed border information.



Going deeper II: borders

Figure: Left: Fully Equivariant CNN/ELS comparison. Right:
boundary-sensitive CNN/ELS comparison.



Going deeper II: borders
Border-broken equivariance prescription works for both ResNets and
UNets most of the time. However, CelebA UNets fully break
equivariance, while still keeping locality.

Figure: Comparison between CelebA outputs for ELS, ResNet, LS, and
UNet.


