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LoRA background

Low-Rank Adaptation (LoRA) fine-tunes large
pre-trained foundation models by introducing
low-rank updates to the attention layers.

Given a linear layer mapping

V 7→ V X0

with X0, LoRA introduces the rank-r update

V 7→ V (X0 +AB⊺)

with A ∈ Rm×r and B ∈ Rm×r. The X0 ∈ Rm×m weights are frozen
(not trained) while A and B are trained.

A is initialized randomly while B is zero-initialized.
So AB⊺ = 0 at initialization.

r = 16 is a common choice for the rank r.

E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen,
LoRA: Low-rank adaptation of large language models, ICLR, 2022.
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LoRA for transformers

In a transformer, it is common practice to place LoRA on the linear layers
for QKV and position-wise FFN.

Denote the pre-trained weights as X0 and the fine-tuned updates as X□.

Full fine-tuning:

minimize
X□

L̂(X□) =
1

N

N∑
i=1

ℓ(fX0+X□
(xi), yi).

LoRA fine-tuning:

minimize
A,B

L̂(AB⊺) =
1

N

N∑
i=1

ℓ(fX0+AB⊺(xi), yi).
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Weight decay on LoRA is nuclear norm regularization

LoRA training often uses weight decay separately on the LoRA factors.
Can be interpreted as solving

minimize
A,B

L̂(AB⊺) + λ
2 ∥A∥2F + λ

2 ∥B∥2F ,

with regularization parameter λ ≥ 0. This is equivalent to

minimize
X□, rankX□≤r

L̂λ(X□) ≜ L̂(X□) + λ∥X□∥∗,

where X□ = AB⊺ and ∥ · ∥∗ is the nuclear norm (sum of singular values).

Insight: Weight decay induces nuclear norm regularization, which, in
turn, induces low-rank updates.

B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization, SIAM Review, 2010.
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The NTK assumption

If the first-order Taylor approximation holds throughout training

fX0+X□
(x) ≈ fX0

(x) + ⟨∇fX0
(x), X□⟩

we say training stays within the NTK regime.

This approximation is justified empirically when prompt-based fine-tuning
is used.

S. Malladi, A. Wettig, D. Yu, D. Chen, and S. Arora, A kernel-based view of language
model fine-tuning, ICML, 2023.
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Background: Strict saddles vs. SOSP

U is a (first-order) stationary point if

∇L̂(U) = 0.

U is a second-order stationary point (SOSP) if

∇L̂(U) = 0, ∇2L̂(U)[V, V ] ≥ 0,

for any direction V ∈ Rm×n. (Hessian has no negative eigenvalues.)

U is strict saddle if it is a first- but not second-order stationary point.

Figure: A strict saddle
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Background: SGD avoids strict saddles

Figure: A strict saddle

Stochastic gradient descent (SGD) does not converge strict saddle
points. SGD only converges to SOSP.

In general, however, an SOSP can be non-global local minima (spurious
local minima). In our setup, all SOSPs are global minima, so SGD
converges to global minima.

R. Ge, F. Huang, C. Jin, and Y. Yuan, Escaping From Saddle Points — Online
Stochastic Gradient for Tensor Decomposition, COLT, 2015.
J. D. Lee, M. Simchowitz, M. I. Jordan, and Benjamin Recht, Gradient descent only
converges to minimizers, COLT, 2016.



LoRA in the NTK regime has no spurious local minima

Theorem
Assume r(r+1)

2 > N . (So r ≳
√
N .) Consider the linearized neural

network and consider a training loss with a small random perturbation.
Then, all SOSPs are global minimizers with probability 1.

Theorem applies when the fine-tuning data size N is not too large:
N ∼ 1000 and r ∼ 30.

Generically, LoRA training has no spurious local minima!

The training loss has saddle points, but SGD won’t converge to them.
SGD converges to an SOSP, which is a global minimum.

U. Jang, J. D. Lee, and E. K. Ryu, LoRA training in the NTK regime has no spurious
local minima, ICML Oral, 2024.
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Assumptions in prior work

Prior theoretical works analyzing LoRA rely on some strong assumptions:

• Small N .

• Linearization, i.e., NTK. (Confirmed to hold in some but not all
practical LoRA fine-tuning setups.)

• Other highly simplified setups.

In this work, we analyze LoRA under much relaxed assumptions and
obtain qualitatively new of conclusions.

LoRA Training Provably Converges to a Low-Rank Global Minimum or It Fails Loudly 11



Assumption: Existence of a low-rank minimizer

We assume there exists a rank r⋆ global minimizer X⋆ of the full
fine-tuning loss L̂λ(X0 +X□) (without any linearization) and that our
LoRA module uses rank r > r⋆.

This is a strong assumption, but it (approximately) holds in most
practical setups.

I don’t know why many fine-tuning tasks admit low-rank updates. This
work proves that if there is a low-rank update, then LoRA finds it.

LoRA Training Provably Converges to a Low-Rank Global Minimum or It Fails Loudly 12



Assumption: Restricted strong convexity and

restricted smoothness

Deep learning objectives are typically neither strongly convex nor have
small smoothness constants. However, they do satisfy restricted strong
convexity and smoothness in many practical fine-tuning scenarios.

f is (α, r,D)-restricted strongly convex about X⋆ if

⟨∇f(X)−∇f(X⋆), X −X⋆⟩ ≥ α∥X −X⋆∥2F .

for any X ∈ Rm×n such that ∥X −X⋆∥F ≤ D and rank(X) ≤ r.

f is (β, r,D)-restricted smooth about X⋆ if

∇2f(X)[UX +XV,UX +XV ] ≤ β∥UX +XV ∥2F
for any [X ∈ Rm×n such that ∥X −X⋆∥F ≤ D and rank(X) ≤ r], [U ∈ Rm×m such
that ∥U∥F = ∥V ∥F = 1] and rank(U) = 1], and [V ∈ Rn×n such that ∥V ∥F = 1
and rank(U) = rank(V ) = 1].

Weaker assumption than the linearization assumption of prior work.
(C.f. Discussion at the end of §3.1 of paper.)

These assumptions are more reasonable since (i) it only needs to hold
locally and (ii) it only needs to hold for deviations of small rank.



Illustration of main result

0

rank ≤ r⋆

r⋆ < rank < r

rank = r

X⋆

Xspurious

Xspurious

Xspurious

Spurious local minima Xspurious may exist, but they have high rank and
large magnitude. Since LoRA training starts at X□ = AB⊺ = 0 and since
weight decay regularizes the rank (nuclear norm) of X□, training likely
converges to the global minimum X⋆.
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LoRA training converges to a global min. or fails loudly

Theorem
Let (A,B) be a SOSP of L̂lora

λ with X□ = AB⊺ and ∥X□ −X⋆∥F ≤ D.
Then,

(i) If σr(X□) ≤ 2α
β σr⋆(X□), then X□ is a global minimizer.

(ii) If σr(X□) >
2α
β σr⋆(X□), then X□ is a spurious solution, and

further X□ has large magnitude with

∥X□∥F ≥

√√√√∑r
s=r⋆+1 σ

2
s(X□)

1− 2ασr⋆

βσr

− ∥X⋆∥F .

If LoRA fine-tuning does converge to a spurious solution, its high rank
and large magnitude would be noticeable, and generalization will be poor.
In this sense, we describe this mode of failure to be failing loudly.

In programming, “failing loudly” refers to coding practices that cause immediate,
obvious failures (crashes or explicit errors) rather than quietly continuing with incorrect
behavior. Loud failures make debugging easier as they are detected immediately.



LoRA training probably won’t fail;

it probably won’t converge to spurious local minima

But we argue that this failure is unlikely due the following implicit biases:

• Zero-initialization (X□ = AB⊺ = 0 at initialization) biases the
optimization towards minima with smaller magnitude.

• Weight decay (applied to the A and B factors separately) implicitly
biases the optimization towards low-rank matrices.

0

rank ≤ r⋆

r⋆ < rank < r

rank = r

X⋆

Xspurious

Xspurious

Xspurious



Experiments: Verifying RSC and RSM

We estimate α and β with r = 8, 16, 32, 64, D = 5, and λ = 0.01.

Rank 8 16 32 64

β/α 8.0249 18.7032 320.82 N/A
α 0.0061 0.0029 0.0002 −0.0445
β 0.0492 0.0539 0.0726 0.3371

Findings: Assumption α > 0 and β < ∞ are plausible when r is small.

This also suggests that reduced memory footprint is not the only benefit
of using small r; the α, β-values that determine the loss landscape also
become more favorable with small r.
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Experiments: Validating main theorem

Findings:

• With zero-initialization, LoRA training converging to global minima.

• With random non-zero initialization, LoRA training converges to
spurious local minima.
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Conclusion

Using low-rank matrix-sensing machinery, we proved a new type of
landscape result for LoRA.

0

rank ≤ r⋆

r⋆ < rank < r

rank = r

X⋆

Xspurious

Xspurious

Xspurious
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