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Malicious adaptation of open-weight models
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Hard to finetune
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Goal: learn a pre-trained feature extractor,                

Setting: Linear feature extractor        
• Linear adapter       trained on Pre-training task
• Linear adapter       trained on Harmful task
• Regression task:

• The bad actor performs linear probing on       by                                  
• Only training the last linear layer. 

IMMUNIZATION FRAMEWORK
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fθ ! x
!θ

on features of the harmful task is difficult,
such that fine-tuning an adapter

but not for other tasks.



CONDITION NUMBER
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Condition number of a general matrix 𝑺
• The ratio between max / min singular values

For constant step-size steepest descent
• min

𝐰
ℒ 𝐰 , ℒ is strongly convex

• Hessian ∇#ℒ with max/min singular values 𝜎$%&/$()
• Convergence rate (Bubeck, 2015) :

• Large condition number à slower convergence à hard to finetune
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Definition of Immunization

A CONDITION NUMBER PERSPECTIVE
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Pre-training task

Harmful task Identity 



Everything is linear → nice analytical forms
Linear Probing:

The Hessian Matrix:

Singular value is given by:

WHEN IMMUNIZATION IS POSSIBLE
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L(DH,w, θ) = minw ‖(XHθ)w − Y ‖22

HH(θ) = ∇2
w
L(DH,w, θ) = θ!KHθ

with KH = X!
H
XH

Immunization depends on 
the “relative angle” 
between singular vectors of 
the covariance matrix for 
pre-training/harmful task.
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Model Immunization from a Condition Number Perspective

Let XH → RN→Din and YH → RN→Dout denote data from
DH stacked into matrices with N ↭ |DH|. When using a
ω2-loss, Eq. (4) can be written as

min
w

L(DH,w, ε) = min
w

↑(XHε)w ↓ Y ↑22 . (8)

In this case, the Hessian matrix

HH(ε) ↭ ↔2
wL(DH,w, ε) = ε↑KHε, (9)

where KH ↭ X↑
H
XH is the data covariance matrix.

Proposition 3.2. The singular values of the Hessian matrix
in Eq. (9) are given by

ϑi =
Din∑

j=1

(
ϑω,i(u

↑
ω,i
qj)

↗
ϖj
)2

, ↘i → {1, . . . , Din}. (10)

Here, ϑω,i and uω,i correspond to the i-th singular value
and vector of ε. Next, ϖj and qj correspond to the j-th
singular value and vector of the covariance K.
Proof sketch. This result can be shown by using the fact
that KH is a symmetric positive semi-definite matrix and
decomposing via SVD. The complete proof is provided in
Appendix B.1. ↫
From Eq. (10), we can see that the singular value of the
Hessian depends on the relative angle between the singu-
lar vectors between feature extractor ε and the covariance
matrix of the data KH. As the feature extractor is shared
between the pretrained DP and harmful DH datasets, the
strength of the immunization depends on the relative angle
between the singular vectors of KP and KH. For exam-
ple, if the singular vectors (sorted by the singular values)
are all perfectly aligned between the two, then no ε can si-
multaneously maximize ϱ(↔2

wL(DH,w, ε)) and minimize
ϱ(↔2

ε
L(DP,ς, ε)).

With a better understanding of the effect of the feature ex-
tractor ε on the condition number, we will next present an
algorithm to immunize a model.

4. Algorithm for Immunizing a Model

We formulate model immunization as an optimization prob-
lem with the following objective:

min
ε,ω

Rill(HH(ε)) +Rwell(HP(ε)) + L(DP,ς, ε), (11)

where Rill, to be defined in Sec. 4.1, denotes our pro-
posed regularizer to maximize the condition number, Rwell

in Eq. (3) denotes the regularizer to minimize the condi-
tion number, HP(ε) ↭ ↔2

ε
L(DP,ς, ε) = ε↑KPε is the

Hessian matrix of the pre-training task, and L denotes the
supervised loss.

Algorithm 1 Condition number regularized gradient descent
for model immunization
input Primary task DP = (XP,YP), harmful task input

XH, supervised loss L, learning rate φ, regularizing
constants ↼P,↼H → R+, model initialization ε0,ς0

1: KP = X↑
P
XP

2: KH = X↑
H
XH

3: for t = 0, 1, . . . , T ↓ 1 do

4: ςt+1 = ςt ↓ φ↔εL(ςt, εt;DP)
5: HP (εt) = ε↑

t
KPεt, HH (εt) = ε↑

t
KHεt

6: εt+1 = εt ↓ φ↔ωL(ςt, εt;X1)

↓ φ↼PK
↓1
P

↔ωRwell (HP (εt))

↓ φ↼HK
↓1
H

↔ωRill (HH (εt))
7: end for

output Immunized feature extractor εI ↭ εT .

Each of the terms encourages the model to satisfy the three
immunization requirements in Definition 3.1. For readabil-
ity, we have dropped the scalar hyperparameters balancing
the terms. We propose to solve Eq. (11) using a gradient-
based method as outlined in Alg. 1.

In the remainder of this section, we will first introduce the
novel regularizer to maximize general matrices’ condition
number and their relevant properties (Sec. 4.1). We then
show how to incorporate the regularizers Rill and Rwell

into the immunization setup (Sec. 4.2). Finally, we dis-
cuss the provable guarantees with respect to each of the
regularizers (Sec. 4.3).

4.1. Regularizer for Maximizing the Condition Number

We analyze the condition number of a general matrix S →
Rpr→pc , p = min{pr, pc}, and rank (S) = k ≃ p. The
compact SVD of S is given by S = UDiag(ω)V ↑, in
which ω = [ϑ1, · · · ,ϑk]

↑ such that ϑmax

S
= ϑ1 ⇐ ϑ2 ⇐

· · · ⇐ ϑk = ϑmin

S
> 0 and ui, vi denotes the ith column

vector of U , V for i → [k].

Inspired by the regularizer for minimizing condition number,
we propose its counterpart for maximizing condition number

Rill(S) =
1

1
2k ↑S↑2

F
↓ 1

2 (ϑ
min

S
)2
, (12)

which satisfies the properties in the following theorem.

Theorem 4.1 (Properties of ϱ-maximizing regularizer
Rill(S)).

(1) [Nonnegativity] For any S → Rpr→pc , Rill (S) ⇐ 0,
and Rill (S) = 0 if and only if ϱ (S) = ⇒.

(2) [Upper Bound] 1
log(ϑ(S)) ≃ (ϑmax

S
)2 Rill (S), i.e.,

Rill(S) upper bounds 1
log(ϑ(S)) when ϑmax

S
is reason-

ably away from ⇒.

3

σi =
∑Din

j=1

(

σθ,i(u!
θ,iqj)

√
γj

)2

, ∀i ∈ {1, . . . , Din} How to train 
such a feature 
extractor 𝜽?



OPTIMIZING CONDITION NUMBER
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immunizes the model on harmful task

maintains the fine-tuning ability on other tasks

maintains the model performance



PROPOSED OBJECTIVE IS “NICE”
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Solve using gradient based 
method!

OPTIMIZING CONDITION NUMBER
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Evaluation metrics: relative immunization ratio

• A successful immunization has large (i) and small (ii)

Baselines:

EXPERIMENTS

17Amber Yijia Zheng, and Raymond A. Yeh. "IMMA: Immunizing text-to-
image models against malicious adaptation." Proc. ECCV 2024.

[Zheng and Yeh, 2024]



Fast convergence is preferredSlow convergence is preferred

REGRESSION TASK (House Price Dataset)
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The feature extractor is a linear model

Norm Ratio =



CLASSIFICATION TASK (MNIST)
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Binary classification on MNIST. We use different digit pairs for    and     .           

Each element shows                 . Blue if successful immunization, red otherwise.



• Feature extractor: a pre-trained model (ResNet18 and ViT) with 
initilization
• The evaluation metric RIR is extended to comparing relative to 

EXPERIMENTS (DEEP-NETS)
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where



• Feature extractor: a pre-trained model (ResNet18 and ViT) with 
initilization
• The evaluation metric RIR is extended to comparing relative to 
• We also report task performance, i.e., accuracy for image 

classification on .

EXPERIMENTS (DEEP-NETS)
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Features pre-trained on ImageNet transferring to 

CLASSIFICATION TASK
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• A condition number based framework for model 
immunization 

• Two differentiable regularizers and a gradient-
based optimization algorithm.

• A first step towards principled understanding of 
model immunization.

• Project page / code: 
• amberyzheng.com/immu_cond_num

Closely related works:
• Rosati, Domenic, et al. "Representation noising: A defence mechanism against 

harmful finetuning." Proc. NeurIPS, 2024
• Zheng, Amber Yijia, et al. "Learning to obstruct few-shot image classification 

over restricted classes." Proc. ECCV, 2024
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