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Understanding LoRA and PEFT: A Weight-Tuning Perspective01

𝑊′ =  𝑊0 + 𝐴𝐵

LoRA

𝑊′ =  𝑚(𝑊0 + 𝐴𝐵)/ 𝑊0 + 𝐴𝐵

m

DoRA

SVD 𝑊0 = 𝑊𝑅𝑒𝑠 + 𝑊𝑃𝑟𝑖

𝑊𝑅𝑒𝑠

𝑊𝑃𝑟𝑖

PiSSA

Other Works: rsLoRA, VeRA, HydraLoRA…
➢ The key idea is “Weight-Tuning”
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Challenging the Weight Tuning View: Counter-Examples 02

1. Houlsby et al., Parameter-Efficient Transfer Learning for NLP, ICML 2019
2. Zhang et al., Parameter-Efficient Fine-tuning with control, ICML 2024

Low-rank update 
to any matrix?

Adapter Attention Modules
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Change Our Mindset From Finetuning to Control03
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Control Theory Beneath the Surface: Fine-Tuning as Implicit Control04

2. Although originally seen as weight-tuning techniques, LoRA and other PEFT methods 
implicitly design control systems .

1. A Linear Time-Invariant (LTI) System with Control
ሶ𝑥𝑡 =  𝐴 𝑥𝑡 +  𝐵 𝑢𝑡

    Finetuning a layer of  NN models:
𝑥𝑡+1 = 𝑥𝑡𝑊 + 𝑥𝑡𝑈 = 𝑥𝑡 𝑊 + 𝑈

    If U = ArBr, it recovers the LoRA case.

3. In the LTI system, the 𝑥𝑡  and 𝑢𝑡  do not need to have the same shape, e.g., 𝑥𝑡 ∈  𝑅𝑛, 𝑢𝑡 ∈  𝑅𝑚. Similarly, the control matrix U does not need 
to have the same shape as the original matrix W. Moreover, 𝑥𝑡𝑈 can be g(u,𝑥𝑡).

4. Yet, there are still notable distinctions:

➢ Control is typically applied to states — not directly to weight matrices.
➢ Feedback control minimally disrupts the original system — instead, it 

introduces perturbations to the system as a whole.
➢ Control not only edits edges — it can create new ones.

New 
Understandings
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From Weight-Based to State-Based Finetuning05

1. Neural network is a directed acyclic graph G = (V,E). Computation on the edge 𝑢, 𝑣 ∈ 𝐸 is defined as:
 

2. State-based tuning involves modifying the intermediate states 𝑥𝑣 with a control function:

3. With state-based tuning,  we are free to choose any starting/ending state.
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One Example of State-Based Finetuning: Towards a 
Control-Affine System06

1. Linear Time-Invariant (LTI) dynamics
 

2. Nonlinear dynamics with time−varying control matrices

3. Control-Affine Nonlinear System:

4. Fully nonlinear control systems:
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Performance Analysis07



© Copyr ight National University of Singapore. All Rights Reserved. 

Performance Analysis (Cont.)08
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Memory Consumption Analysis 09
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Batch size = 16, Seq Length = 1024, Feature Dimension = 4096
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Memory Reduction by Parallel Control10
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What consumes the memory?
• Backward States 

(LoRA)
• Model Weight 

(QLoRA)
• Forward States 

(Control)



© Copyr ight National University of Singapore. All Rights Reserved. 

Train 7B/8B Models on Nvidia-309011

Table 1. Comparison on the Commonsense benchmark.  
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Summary12

➢ Changing the Mindset: although initially framed as weight-tuning techniques, PEFT methods 
reveal a deeper connection to classical control theory, with each block serving as a controller.

➢ From Weight-based to State-based: similar to control theory, the focus of tuning can shift from 
weights to states — allowing us to modify arbitrary states in the graph by updating existing 
edges or introducing new ones.

➢ Example: One particular example is designing a control-affine system, where a parallel scheme 
can be adopted with minimal modification to the original system. This allows for simpler 
theoretical analysis and reduces memory usage by skipping large components.

czhang24@nus.edu.sg
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THANK YOU
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