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m Understanding LoRA and PEFT: A Weight-Tuning Perspective
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| > The key idea is “Weight-Tuning”




Challenging the Weight Tuning View: Counter-Examples
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m Change Our Mindset From Finetuning to Control
Feedback Control PEFT
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Control Theory Beneath the Surface: Fine-Tuning as Implicit Control

1. A Linear Time-Invariant (LTI) System with Control
Jét = A xt + B ut

Finetuning a layer of NN models: y
Pretraine
Xty1 = xtW + xtU = xt(W + U) Weights

If U = AB,, itrecovers the LoRA case.

= Rdxd

2. Although originally seen as weight-tuning techniques, LoRA and other PEFT methods

implicitly design control systems.

New
3. In the LTI system, the x; and u; do not need to have the same shape, e.g., x¢ € R™, u; € R™. Similarly, the control matrix U does not need Understandings

to have the same shape as the original matrix W. Moreover, x.U can be g(u,x;). D e T -

4. Yet, there are still notable distinctions:

> Control is typically applied to states — not directly to weight matrices.
Input Xip Output Xy
> Feedback control minimally disrupts the original system — instead, it >

introduces perturbations to the system as a whole.
K(Xout — *ref)

> Control not only edits edges — it can create new ones.

© Copyright National University of Singapore. All Rights Reserved. N
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From Weight-Based to State-Based Finetuning
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1. Neural network is a directed acyclic graph G = (V,E). Computation on the edge (u,v) € E isdefined as:

u o pu .
Ly = Jo (-'L'u: W u—n))
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! | 2. State-based tuning involves modifying the intermediate states X, with a control function:
! I
: i
| i

! [ u
Ly = § i Ty + Gy (]w—u%vy qj“)

3. With state-based tuning, we are free to choose any starting/ending state.

© Copyright National University of Singapore. All Rights Reserved.
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One Example of State-Based Finetuning: Towards a
Control-Affine System

1. Linear Time-Invariant (LTI) dynamics
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2. Nonlinear dynamics with time—varying control matrices

@y = f(z¢) + Brwy
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4, Fully nonlinear control systems:
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3. Control-Affine Nonlinear System: |
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Performance Analysis

Consider a deep linear network defined as:
f:ﬂ&‘g—}ﬂi"r: $t+1::rtWt, tZO:“.,T:
and its low-rank adaptation:

fizo = 2r, Tpyr =x(Wi +U), t=0,...,T -1,

where z; € R?% represents the hidden state, W; € R%*dt+1 is the weight
matrix at layer t, and U; € R%*%+1 i5 a low-rank matrix with rank 7.
Then, there exists a weight matrix M satisfying

rank(M) <rg+---+rr_1,

such that for all 2y € R%,

f(l‘[}) = f(.’L’[;) + xgM.

© Copyright National University of Singapore. All Rights Reserved.
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Performance Analysis (Cont.)

Let F,, and G, be the mappings U; + x¢.1 € R?, as defined in equations
(1) and (2), respectively.

Ti1 = X + fi (e (W +Uy)) (1)
Tie1 = 2t + fr (W) + 24U, (2)

If Vf(x) is singular, then the pushforward of the tangent space at 0 under
F,, forms a proper subspace of R?. In contrast, the pushforward of the
tangent space at 0 under G,, always spans the entire space R%, as long as
xrt 1S NON-Zero.

© Copyright National University of Singapore. All Rights Reserved.
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Memory Consumption Analysis

Distribution of Memory Consumption
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Memory Reduction by Parallel Control
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Distribution of Memory Consumption
LoRA

FFN® Weigh What consumes the memory?
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Train 7B/8B Models on Nvidia-3090

Table 1. Comparison on the Commonsense benchmark.
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# of GPU Training .
Model Method Pavamis Memory Time BoolQ | PIQA | SIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg
ChatGPT * | - - - - 731 | 854 | 685 | 785 66.1 89.8 | 79.9 | 74.8 | 77.0
LoRA (QKVUD) 56.10 M |/ 44.204 GB ||| 8h37m 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
LLaMA2-7B DoRA (QKVUD) * 56.98 M |1 59.568 GB ||| 14h50m 71.8 83.7 | 76.0 89.1 82.6 83.7 68.2 824 | 79.7
Control(UD)+LoRA(QKV) | 41.94 M | 38.556 GB ||| 7h36m 73.0 83.5 79.5 89.7 82.6 82.9 68.6 80.4 | 80.0
DoubleControl (QKVUD) | 33.55M | 35.214 GB ||| 6h58m 72.3 82.5 79.2 89.1 83.1 83.0 68.5 79.0 79.6
LoRA (QKVUD) 56.62M |/ 55.040 GB ||| 9h33m 70.8 85.2 79.9 91.7 84.3 84.2 T2 79.0 80.8
LLaMA3-SB DoRA (QKVUD) * 57.41M | 67.284 GB ||| 15h15m 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
) Control(UD)+LoRA(QKV) | 35.65M | 48.550 GB ||| 8hllm 75.7 87.9 | 80.4 95.5 86.3 90.6 79.8 86.2 85.3
DoubleControl (QKVUD) | 33.55M | 45.316 GB ||| 7h44m 74.1 87.8 | 80.7 95.5 86.0 90.8 80.0 87.8 (853

# of GPU Training .
Model Method ‘ Params | Memory Time BoolQ | PIQA | SIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg
[ LaMA2-7B Control(UD)+LoRA(QKV) | 41.94 M (ZTB7TIGBY| 21h2lm 714 81.1 5.7 86.7 82.9 82.3 67.2 80.4 78.4
DoubleControl (QKVUD) | 33.55 M [120.656 GB || 20h09m 70.8 83.0 79.2 84.6 81.5 82.8 68.3 81.2 78.9
LLaMA3-SB Control(UD)+LoRA(QKV) | 35.65 M [122.920GB || 21h5lm 75.1 87.8 79.9 95.3 85.0 90.0 79.0 85.0 | 84.6
. DoubleControl (QKVUD) | 33.55 M [122.176 GB|| 20h33m 4.4 86.9 80.4 95.3 85.4 90.1 79.4 85.6 | 84.7

© Copyright National University of Singapore. All Rights Reserved.
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Summary

4 N

Changing the Mindset: although initially framed as weight-tuning techniques, PEFT methods

reveal a deeper connection to classical control theory, with each block serving as a controller.

From Weight-based to State-based: similar to control theory, the focus of tuning can shift from
weights to states — allowing us to modify arbitrary states in the graph by updating existing

edges or introducing new ones.

Example: One particular example is designing a control-affine system, where a parallel scheme
can be adopted with minimal modification to the original system. This allows for simpler N

theoretical analysis and reduces memory usage by skipping large components. o

'ﬁ czhang24(@nus.edu.sg
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" THANK YOU
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