

Motivation – Long Contexts for Multi-Modal LLM

Image of 336 x 336 divided into 14 x 14 patches \Rightarrow 24 x 24 = 576 patches

LlaVA Architecture from [Liu et al. 2023]

1 frame = 576 tokens

The average length of a YouTube video = 11.7 minutes

1 frame per second sampling rate =>

576 x 11.7 x 60 = 404,352 tokens

OmniLong Training Recipe

Handling Multimodal Long Context Input

Ring Attention

[Figure from chen et al. 2024]

DeepSpeed Zero3 + CPU Offload

ZeRO-Offload training process on each GPU time Step i + 1Step i Forward & Backward Forward & Backward p update computation stream: **GPU CPU GPU** CPU -> GPU GPU -> CPU swapping stream: g offload g swap

Stage 1: Shards optimizer states across data parallel workers/GPUs

Stage 2: Shards optimizer states + gradients across data parallel workers/GPUs

Stage 3: Shards optimizer states + gradients + model parameters across data parallel workers/GPUs

Optimizer Offload: Offloads the gradients + optimizer states to CPU/Disk building on top of ZERO Stage 2

Param Offload: Offloads the model parameters to CPU/Disk building on top of ZERO Stage 3

Figures from [DeepSpeed Team et al 2020]

Out of Memory (OOM) issue – Root Cause

torch.OutOfMemoryError: CUDA out of memory.

Caused by fully materializing the logits matrix and its gradients!!!

Out of Memory (OOM) issue - Solution

torch.OutOfMemoryError: CUDA out of memory.

Optimised Loss Calculation

Datasets and Base Models

Base Models

- Ilava-onevision-qwen2-7b-ov-hf
- Qwen2.5-VL-7B-Instruct

Stage 1 source code research papers open web content public domain books 1.2B tokens

Long-context Continual Pretraining

Fine-tuned Models

- OmniLong-LLaVA-OneVision-7B
- OmniLong-Qwen2.5-VL-7B

1200 videos

Video Instruction Fine-tuning

Text Needles in A Haystack (NIAH)

Long Context Capabilities in Video Domain

[Figure from <u>Zhang et al. 2024</u>] Vision Needle in the Haystack

- Purely synthetic long vision benchmark inspired by the language model's NIAH test
- 5 video question-answering problems and inserts each answer (ie. the "needle") as a single frame into hours-long videos (ie. the "haystack")

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ablation study

- W/O Stage 2 vs with Stage 2
- Stage2 (Text Instruction Finetuning) generally further enhance the long context capabilities

OmniLong-LLaVA-OneVision-7B

VideoMME: Comprehensive Evaluation Benchmark of Multimodal LLMs in Video Understanding

- short (<2 min.)
- medium (4–15min.)
- long (30–60min.)
- A total of 900 videos (254 hours)
- 2,700 questionanswer pairs.
- Subtitles

Screen shot from <u>VideoMME website</u>

13

VideoMME Benchmark - OmniLong-LLaVA-OneVision-7B

VideoMME Benchmark - OmniLong-Qwen2.5-VL-7B

VideoMME Leadboard

Model Name	# of Params	Overall (%) - w/o subs	Overall (%) - w subs
OmniLong-Qwen2.5-VL-7B	7B	67.9	73.4
Qwen2.5-VL-7B-Instruct	7B	65.1	71.6
OmniLong-LLaVA- OneVision-7B	7B	60.7	67.1
<u>llava-onevision-qwen2-7b-ov-hf</u>	7B	58.2	61.5
<u>LongVA</u>	7B	52.6	54.3

Validated Long Context Finetuning Solutions on AWS

AWS Sagemaker AI

https://github.com/jzhang38/EasyContext/

PyTorch

Try OmniLong-Qwen2.5-VL-7B and stay tuned!

https://huggingface.co/aws-prototyping/long-llava-qwen2-7b

Thank you!

Questions and Discussions

