Knobs of the Mind

Dopamine, Serotonin, and a Maze-Running Rover

Dario Fumarola Jin Tan Ruan

Amazon Web Services

ICML 2025 - Vancouver, Canada

The Problem: RL's Achilles' Heel

State-of-the-Art Performance

50,000 episodes of training Agent achieves **95%** success rate

A Tiny Change Breaks Everything.

Success rate drops to 12% Retraining: Another 50k episodes

Time CostLengthy Retraining Cycles

A Safatu E

Safety RiskUnpredictable failures

Nature's Solution: Chemical Control, Not Rewiring

How does a mouse instantly switch from exploring to fleeing? Not by rewiring its brain.

Neuromodulators modulate entire circuits globally

Two Adaptation Systems

Synaptic Plasticity
Physical rewiring via LTP/LTD
Energy intensive, permanent changes

Neuromodulation
Chemical signals change dynamics
Instant, reversible, energy efficient

The Key Players

Dopamine: Amplifies reward signals Serotonin-2A: Increases exploration Serotonin-1A: Inhibits risky actions

hours-days

milliseconds

The Computational Opportunity

Biological Brains

- Millisecond-level shifts
- No synaptic rewiring
- Chemical gain control
- Energy efficient

Current RL Agents

- Hours-long retraining
- Gradient descent only
- **&** Weight updates required
- Energy & compute-hungry

The Question: Can we give RL agents brain-like adaptability?

Our Answer: Add external "gain knobs" that bypass gradient descent—just three floating-point numbers that act like neuromodulators.

Our Approach: Freeze the Brain, Tune the Mood

Frozen A2C Network

CNN + Policy + Critic

1.3 M parameters

Pre-trained: 50 000 episodes
Then *completely frozen*

The Mood Vector

 $extbf{\emph{k}} = ig(extit{\emph{k}}_{\mathsf{DA}}, \, extit{\emph{k}}_{\mathsf{ent}}, \, extit{\emph{k}}_{\mathsf{risk}}ig)$

*k*_{DA} **Dopamine**

Reward sensitivity

k_{ent} Exploration

Action randomness

k_{risk} Caution

Danger avoidance

Key Innovation: Instead of re-training **1.3 M** parameters, we inject **3 scalars**. Behavioral change in **milliseconds**, not hours.

TD-error δ_t is computed only as an internal signal—no gradients flow after pre-train.

Mood Knob #1: The Dopamine Gain (k_{DA})

Biological Inspiration

Dopamine neurons spike when rewards are better than expected

Diagnostic TD Signal

$$\delta_t = R_t + \gamma V(s_{t+1}) - V(s_t)$$

Acts like the biological reward-prediction error.

Our Dopamine Gain

$$\delta_t^{\star} = k_{\mathsf{DA}} \left[R_t + \gamma V(s_{t+1}) - V(s_t) \right]$$

(scales the signal, not the weights)

k _{DA} Behavioural flavour	
-------------------------------------	--

- 2.0 High reward sensitivity
- 1.0 Baseline drive
- 0.5 Blunted reward response

Mood Knob #2: The Exploration Gain (k_{ent})

Biological Inspiration

Serotonin 5-HT_{2A} receptors broaden behavioural variety

Psychedelics target these receptors

Standard Action Selection

$$\pi(a|s) = \operatorname{Softmax}(z(s))$$

Network outputs fixed preferences.

Our Modification

$$\pi(a|s) = \operatorname{Softmax}\left(\frac{z(s)}{\tau}\right), \quad \tau = e^{k_{\mathsf{ent}}}$$

prob

higher τ
 -2
 0
 $+2$

Mood Knob #3: The Risk-Aversion Gain (k_{risk})

Biological Inspiration

Serotonin 5- HT_{1A} receptors curb approach to threats

SSRIs mitigate anxiety via this pathway

Danger signal

$$\rho(s) = e^{-d/3}, \quad d = \text{distance to threat}$$

Our modification

$$R_t^{\text{mod}} = R_t - k_{\text{risk}} \rho(s_t)$$

risk	Interpretation		
0	No danger avoidance		
1	Balanced caution		

Interpretation

2 High risk aversion

Putting It All Together: The Complete System

Emergent Behaviors: Three Example Personalities

Different mood settings → Different behavioral phenotypes

Greedy Speedrunner k = (2, -2, 0)

High reward focus
Low exploration
No caution

Result: Fast but reckless

Curious Explorer k = (1, 2, 1)

Balanced reward High exploration Moderate caution

Result: Robust and adaptive

Paranoid Survivor k = (0.5, 0, 2)

Low reward drive No exploration High caution

Result: Safe but inefficient

The Mood Manifold: A Pareto Frontier of Behaviors

Experimental Setup

100 sampled moods

 $k_{\mathrm{DA}} \sim \mathcal{U}[0.5,\, 2.0] \ k_{\mathrm{ent}} \sim \mathcal{U}[-2,\, 2] \ k_{\mathrm{risk}} \sim \mathcal{U}[0,\, 2]$ Sobol sequence, seed 42

1 000 episodes per mood

Key finding

risk.

The mood space forms a smooth *Pareto frontier*: maximizing reward inevitably raises

Testbed 1: Pac-Mind — Classic Challenge, Modern Twist

20×20 grid world with 4 ghosts and 1 reward pellet

Danger signal: $\rho(s) = \exp(-d_{ghost}/3)$

The Challenge

Ghosts move predictably yet create *dynamic* danger zones.

Optimal routes to the pellet often require passing near a ghost!

Key metrics

Episode reward (0 or 1)

Collision rate

Steps-to-goal

Success rate

Testbed 2: MiniHack-HazardRooms — Procedural Death Traps

Procedurally generated rooms with lava and spikes

The Challenge

Each episode is unique—rooms are procedurally generated. The agent must *transfer* its mood-policy to unseen layouts.

Danger signal

$$\rho(s) = \begin{cases} 1 & \text{lava or spike at } s \\ 0 & \text{otherwise} \end{cases}$$

Key difference

No gradient—danger is *binary*; a single wrong step means death.

Live Demo: Real-Time Mood Control

Meet Synapse 1.0

How Do We Compare? Outperforming the Field

Our method vs. state-of-the-art safety-aware RL baselines

Method	Reward ↑	Collisions ↓	Speed (steps/s) ↑
Mood-A2C (ours)	$\textbf{0.87}\pm\textbf{0.01}$	0.025 ± 0.003	770 ± 15
CPO	0.81 ± 0.02	$\textbf{0.011}\pm\textbf{0.002}$	180 ± 8
SAC-Safety	0.74 ± 0.03	0.045 ± 0.004	320 ± 12
Meta-Grad A2C	0.85 ± 0.02	0.018 ± 0.003	84 ± 5

Our advantages

Why the baselines are slower

4.3 × faster than CPO	CPO: solves a QP every step
Highest reward with near-best safety	SAC-Safety: dual-critic overhead
No constrained optimisation	Meta-Gradient: costly outer loop
Instant adaptation ($\approx 1.3 \text{ ms/step}$)	All rely on gradient descent

Hardware: RTX A6000, TensorRT INT8 (ours) vs. PyTorch FP32 (baselines); averages over 5 random seeds.

Ablation Studies: Are All Three Gains Necessary?

What happens when we remove a mood knob?

Configuration	Removed	Reward	Collisions	What Breaks
Full model	_	0.87 ± 0.01	0.025 ± 0.003	All gains active (baseline)
No risk	k_{risk}	0.78 ± 0.02	0.117 ± 0.007	Ignores danger $ ightarrow$ frequent crashes
No exploration	k_{ent}	0.74 ± 0.03	0.048 ± 0.005	Gets stuck in local optima; low cov-
No dopamine	k_{DA}	0.69 ± 0.03	0.020 ± 0.004	erage Sluggish learning; poor reward drive
Unfreeze actor	<u> </u>	$\mid 0.90 \pm 0.02$	0.028 ± 0.004	+0.09 ms latency; higher variance

All numbers are mean \pm s.e. over the same 5 seeds; latency measured on the same RTX A6000.

Automatic Gain Tuning: Learning the Right Mood

"But how do you know what mood to use?" — We can **learn** it!

How it works

- Start with random moods
- Model the performance surface
- Sample high-uncertainty regions
- Converge to optimal k

Results

- Finds optimum in 230 episodes
- Works for any reward function
- Reaches 96% of hand-tuned performance

Current Limitations

Frozen Policy Quality

Performance capped by pre-trained network

Hand-Designed Danger

Must define $\rho(s)$ manually for each environment

Three Gains Only

Limited to DA/5-HT axes; no NA or ACh yet

Future Directions

Learned Danger Signals

Train $\rho(s)$ from human feedback or experience

More Neuromodulators

- ullet Noradrenaline o Attention
- ullet Acetylcholine o Learning

Multi-Agent Moods

Coordinate swarms via shared mood broadcasts

Key Contributions: What We've Achieved

First RL system with explicit neuromodulator mapping:

 $\mathsf{DA} \to \mathsf{Reward}\ \mathsf{gain}$

 $5\text{-HT}_{2A} o Exploration$

 $5\text{-HT}_{1A} \to \mathsf{Risk}$ aversion

Not just inspired—directly mapped

Blazing Speed

Adaptation in just **1.3 ms** per step

 $4 \times$ faster than CPO

No gradient descent

No recompilation

Milliseconds behavioural shifts

Real-World Ready

Proven across three diverse domains:

Grid worlds

Procedural games

Physical robots

One network, many worlds

Full Technical Details in Our Paper

Mood Swings: Neuromodulatory Gains that Flip Impulse and Caution in Reinforcement Learning

Dario Fumarola 1 Jin Tan Ruan 1

Abstract

Deep-RL policies fracture when rewards or hazards shift because gradient updates are slow. Brains sidestep that by broadcasting neuromodulators that retune circuits in milliseconds. We borrow the trick: a frozen A2C backbone is driven by three global gains—one dopaminergic scale on the TD error and two serotonergic terms that widen entropy or tax danger. Writing those scalars takes 3 ms; a full forward + critic-update + gain step costs 13 ms on an RTX A6000. On a 20×20 MindMaze and MiniHack HazardRooms, raising dopamine lifts the first-50-step return from 0.31 ± 0.02 to 0.93 ± 0.01 but raises collision rate from 0.7% to 2.9%; high-serotonin settings cut collisions below 0.3% at an 18 % speed cost. Thus three broadcast gains form a millisecond safety knob that smoothly trades impulse for caution without retraining.

Hot-swapping these three floats reroutes behaviour on a microsecond timescale without touching network weights.

In a 20×20 Pac-Mind maze and MiniHack HazardRooms, high dopamine triples early reward but quadruples collisions, whereas serotonin-heavy settings cut collisions below $1\,\%$ with slower returns, tracing a smooth safety–performance frontier.

1.1. Contributions

- An actor-critic whose three global gains let us flip impulse-caution in 13 ms without weight updates.
- (ii) A formal "mood manifold" linking those gains to reward, risk, and exploration.
- (iii) Empirical validation on two grid benchmarks plus a SLAM case study, including automatic gain tuning via Bayesian optimisation and an LLM supervisor.

Section 3 formalises the mood manifold, Section 4 details the architecture, Section 5 reports results and ablations, and

Conclusion: Fast Adaptation Without Learning

What if RL agents could adapt like animals do?

Biology

dulators change

Our Approach

Three external gains change behaviour in **milliseconds** without gradient updates

Neuromodulators change behaviour in **milliseconds** without rewiring synapses

The Take-Home Message

Fast adaptation and slow learning are **orthogonal** capabilities. By adding mood knobs, we give RL the best of both worlds.

Appendix A.1 — Serotonergic Mapping Used in the Mood Controller

Revised gain definitions

$$k_{\mathrm{ent}} = \alpha \left[5 \text{-HT}_{2A} \right] - \beta \left[5 \text{-HT}_{1A} \right] \qquad k_{\mathrm{risk}} = \gamma \left[5 \text{-HT}_{1A/1B} \right] - \delta \left[\mathsf{DA}_{D2} \right]$$

5-HT $_{2A}$ boosts cortical entropy \rightarrow wider policy exploration.

5- $\mathrm{HT}_{1A/1B}$ (amygdala hippocampus) \uparrow threat sensitivity and behavioural inhibition.

Striatal D₂ antagonism tempers impulsive risk, counter-balancing serotonergic caution.

Receptor	Dominant behavioural signatures (rodent/ex vivo)	Refs.
	(rodelit/ex vivo)	
5-HT _{2A}	↑ cortical excitation, ↑ novelty seeking, ↑ response entropy	Nichols 2016; Carhart-Harris 2014
$5-HT_{1A}$ (post-syn.)	↓ anxiety, ↑ approach in EPM / OFT paradigms	Savitz 2020; Lowry 2005
$5-HT_{1A}$ (auto)	Raphe auto-receptor brake; dampens both reward	threat circuits
Richardson 2013		
5-HT _{1B}	Presynaptic inhibition, promotes delayed-reward patience	Nautiyal 2015
D_2	Striatal no-go bias, ↓ risk-taking	Frank 2004; Bari 2020

Fumarola & Ruan Knobs of the Mind ICML 2025 22 / 24

Appendix A.2 — Mathematical Details

Reward modification (always on)

$$R_t^{\mathsf{mod}} = R_t - k_{\mathsf{risk}} \rho(s_t)$$

Critic updates during pre-training only

$$\begin{aligned} & V_w(s) \leftarrow V_w(s) + \alpha_c k_{\mathsf{DA}} \big[R_t^{\mathsf{mod}} + \gamma V_w(s') - V_w(s) \big] \\ & \hat{Q}_w(s, a) \leftarrow \hat{Q}_w(s, a) + \alpha_c k_{\mathsf{DA}} \big[R_t^{\mathsf{mod}} + \gamma \max_{a'} \hat{Q}_w(s', a') - \hat{Q}_w(s, a) \big] \end{aligned}$$

 $(lpha_c=$ 0 after pre-train; all weights frozen)

Action-selection policy (deployment)

$$\pi_{\mathbf{k}}(a|s) = \frac{\exp(z_a(s) + \eta A_{\mathbf{k}}(s,a))/ au}{\sum_{a'} \exp(z_{a'}(s) + \eta A_{\mathbf{k}}(s,a'))/ au}, \qquad au = \exp(k_{\mathsf{ent}})$$

 $A_{\pmb{k}}(s,a) = \hat{Q}_w(s,a) - V_w(s)$ is the advantage; η is its scale.

Thank You!

Dario Fumarola

✓ fumadari@amazon.com

&

Jin Tan Ruan **☑** jtanruan@amazon.com

Customer Satisfaction Survey
This was our first conference! Your feedback helps us improve as aspiring researchers:)