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Outline

» We study robust overfitting issue in adversarial training.

Theoretical contribution by analyses:

P In general cases, hard adversarial instances lead to more severe overfitting.

Empirical contribution by case studies:

» Downplaying hard adversarial instances help mitigate adversarial overfitting.
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Adversarial Overfitting

> We use the average training loss per instance to define the difficulty of a training
instance, and then monitor how loss evolves during training.
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Figure: (Left) Learning curves of vanilla training and adversarial training. (Right) Learning curves of training
instances of different difficulty levels. The grey curves are overall learning curves for reference.
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Theoretical Analyses: Why?

Data The data {(x;, y;)}7, is binary e, x; € R™ y; € {—1,+1}. It is sub-Gaussian
with positive conditional variance o2 = E[Varly|x]] = 0% > 0.
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el is a good indicator of the

Lipschitz constant Lip(f(-,0)) = supx, x,
adversarial vulnerability.
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Theoretical Analyses: Why?

Theorem (Informal and Simplified)

Given training data {(x;,y;)}?_,, and a model parameterized by bounded parameters 0,
we conduct adversarial training and let X to the adversarial examples of x. If the

training loss C= 137 | (f(x,0) — y;)? is sufficiently small, then the Lipschitz constant
of the model is lower bounded by the following equation almost surely.

Lip(f(-,0)) > H(O’Z,G, 0
ot Ht et, HT: CL, HT.
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Theoretical Analyses: Why?

Theorem (Informal and Simplified)

Given training data {(x;, y;)}?_,, and a model parameterized by bounded parameters 6,
we conduct adversarial training and let X to the adversarial examples of x. If the

training loss C =137 | (f(x,0) — y;)? is sufficiently small, then the Lipschitz constant
of the model is lower bounded by the following equation almost surely.

Lip(f(-,0)) > H(c?,€, C)

» Lipschitz constant indicates adversarial vulnerability. !

1 Weng, et. al. "Towards fast computation of certified robustness for relu networks”.
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Theoretical Analyses: Why?

Theorem (Informal and Simplified)

Given training data {(x;, y;)}?_,, and a model parameterized by bounded parameters 6,
we conduct adversarial training and let X to the adversarial examples of x. If the
training loss C =137 | (f(x,0) — y;)? is sufficiently small, then the Lipschitz constant
of the model is lower bounded by the following equation almost surely.

Lip(f(-,0)) > H(c?,€, C)

» Lipschitz constant indicates adversarial vulnerability. !
» (s sufficiently small = Lipschitz constant indicates generalization gap.
» (C|: training processes = H 1 overfitting.
» o 1: harder instances = H {: overfitting.
» ¢ 1: larger adversarial budget = H {: overfitting.

1 Weng, et. al. "Towards fast computation of certified robustness for relu networks”.
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Empirical Observation: How?

» Methods mitigating adversarial overfitting implicitly downplay hard instances.
» Weaker perturbation; adaptive and easier targets; smaller weights.

» Methods highlighting hard instances do not achieve true robustness.
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Empirical Observation: How?

» Methods mitigating adversarial overfitting implicitly downplay hard instances.
» Weaker perturbation; adaptive and easier targets; smaller weights.

» Methods highlighting hard instances do not achieve true robustness.

Contributions:
Theory-backed analysis of adversarial overfitting in the lens of training data.
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Thanks!

6/6



