On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training

Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, Sabine Süsstrunk

Journal Track on ICML 2025

Outline

▶ We study robust overfitting issue in adversarial training.

Theoretical contribution by analyses:

▶ In general cases, hard adversarial instances lead to more severe overfitting.

Empirical contribution by case studies:

Downplaying hard adversarial instances help mitigate adversarial overfitting.

Adversarial Overfitting

▶ We use the average training loss per instance to define the difficulty of a training instance, and then monitor how loss evolves during training.

Figure: (Left) Learning curves of vanilla training and adversarial training. (Right) Learning curves of training instances of different difficulty levels. The grey curves are overall learning curves for reference.

Data The data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ is binary, i.e., $\mathbf{x}_i \in \mathbb{R}^m, y_i \in \{-1, +1\}$. It is sub-Gaussian with positive conditional variance $\sigma^2 = \mathbb{E}[Var[y|\mathbf{x}]] = \sigma^2 > 0$.

Data The data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ is binary, i.e., $\mathbf{x}_i \in \mathbb{R}^m, y_i \in \{-1, +1\}$. It is sub-Gaussian with positive conditional variance $\sigma^2 = \mathbb{E}[Var[y|\mathbf{x}]] = \sigma^2 > 0$.

Lipschitz constant $Lip(f(\cdot,\theta)) = \sup_{\mathbf{x}_1,\mathbf{x}_2} \frac{\|f(\mathbf{x}_1,\theta) - f(\mathbf{x}_2,\theta)\|}{\|\mathbf{x}_1 - \mathbf{x}_2\|}$ is a good indicator of the adversarial vulnerability.

Theorem (Informal and Simplified)

$$Lip(f(\cdot,\theta)) \ge H(\sigma^2,\epsilon,C)$$

$$\sigma \uparrow$$
, $H \uparrow$; $\epsilon \uparrow$, $H \uparrow$; $C \downarrow$, $H \uparrow$.

Theorem (Informal and Simplified)

Given training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, and a model parameterized by bounded parameters θ , we conduct adversarial training and let \mathbf{x}' to the adversarial examples of \mathbf{x} . If the training loss $C = \frac{1}{n} \sum_{i=1}^n (f(\mathbf{x}_i', \theta) - y_i)^2$ is sufficiently small, then the Lipschitz constant of the model is lower bounded by the following equation almost surely.

$$\mathit{Lip}(\mathit{f}(\cdot,\theta)) \geq \mathit{H}(\sigma^2,\epsilon,\mathit{C})$$

Lipschitz constant indicates adversarial vulnerability. 1

¹L. Weng, et. al. "Towards fast computation of certified robustness for relu networks".

Theorem (Informal and Simplified)

$$\mathit{Lip}(\mathit{f}(\cdot,\theta)) \geq \mathit{H}(\sigma^2,\epsilon,\mathit{C})$$

- Lipschitz constant indicates adversarial vulnerability. 1
 - ightharpoonup C is sufficiently small \Longrightarrow Lipschitz constant indicates generalization gap.

¹L. Weng, et. al. "Towards fast computation of certified robustness for relu networks".

Theorem (Informal and Simplified)

$$\mathit{Lip}(\mathit{f}(\cdot,\theta)) \geq \mathit{H}(\sigma^2,\epsilon,\mathit{C})$$

- Lipschitz constant indicates adversarial vulnerability. 1
 - ightharpoonup C is sufficiently small \Longrightarrow Lipschitz constant indicates generalization gap.
 - $ightharpoonup C \downarrow$: training processes $\Longrightarrow H \uparrow$: overfitting.

 $^{^{1}\}text{L}$. Weng, et. al. "Towards fast computation of certified robustness for relu networks".

Theorem (Informal and Simplified)

$$\mathit{Lip}(\mathit{f}(\cdot,\theta)) \geq \mathit{H}(\sigma^2,\epsilon,\mathit{C})$$

- Lipschitz constant indicates adversarial vulnerability. 1
 - ightharpoonup C is sufficiently small \Longrightarrow Lipschitz constant indicates generalization gap.
 - $ightharpoonup C \downarrow$: training processes $\Longrightarrow H \uparrow$: overfitting.
 - $ightharpoonup \sigma \uparrow$: harder instances $\Longrightarrow H \uparrow$: overfitting.

¹L. Weng, et. al. "Towards fast computation of certified robustness for relu networks".

Theorem (Informal and Simplified)

$$\mathit{Lip}(\mathit{f}(\cdot,\theta)) \geq \mathit{H}(\sigma^2,\epsilon,\mathit{C})$$

- Lipschitz constant indicates adversarial vulnerability. 1
 - ightharpoonup C is sufficiently small \Longrightarrow Lipschitz constant indicates generalization gap.
 - $ightharpoonup C \downarrow$: training processes $\Longrightarrow H \uparrow$: overfitting.
 - $ightharpoonup \sigma \uparrow$: harder instances $\Longrightarrow H \uparrow$: overfitting.
 - $ightharpoonup \epsilon \uparrow$: larger adversarial budget $\Longrightarrow H \uparrow$: overfitting.

¹L. Weng, et. al. "Towards fast computation of certified robustness for relu networks".

Empirical Observation: How?

- ▶ Methods mitigating adversarial overfitting implicitly downplay hard instances.
 - ▶ Weaker perturbation; adaptive and easier targets; smaller weights.
- ▶ Methods highlighting hard instances do not achieve true robustness.

Empirical Observation: How?

- Methods mitigating adversarial overfitting implicitly downplay hard instances.
 - ▶ Weaker perturbation; adaptive and easier targets; smaller weights.
- Methods highlighting hard instances do not achieve true robustness.

Contributions:

Theory-backed analysis of adversarial overfitting in the lens of training data.

Thanks!