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Outline

▶ We study robust overfitting issue in adversarial training.

Theoretical contribution by analyses:
▶ In general cases, hard adversarial instances lead to more severe overfitting.

Empirical contribution by case studies:
▶ Downplaying hard adversarial instances help mitigate adversarial overfitting.
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Adversarial Overfitting
▶ We use the average training loss per instance to define the difficulty of a training

instance, and then monitor how loss evolves during training.
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Figure: (Left) Learning curves of vanilla training and adversarial training. (Right) Learning curves of training
instances of different difficulty levels. The grey curves are overall learning curves for reference.

3 / 6



Theoretical Analyses: Why?

Data The data {(xi, yi)}n
i=1 is binary, i.e., xi ∈ Rm, yi ∈ {−1,+1}. It is sub-Gaussian

with positive conditional variance σ2 = E[Var[y|x]] = σ2 > 0.

Theorem (Informal and Simplified)
Given training data {(xi, yi)}n

i=1, and a model parameterized by bounded parameters θ,
we conduct adversarial training and let x′ to the adversarial examples of x. If the
training loss C = 1

n
∑n

i=1(f(x′i, θ)− yi)2 is sufficiently small, then the Lipschitz constant
of the model is lower bounded by the following equation almost surely.
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of the model is lower bounded by the following equation almost surely.

Lip(f(·, θ)) ≥ H(σ2, ϵ,C)

▶ Lipschitz constant indicates adversarial vulnerability. 1

▶ C is sufficiently small =⇒ Lipschitz constant indicates generalization gap.
▶ C ↓: training processes =⇒ H ↑: overfitting.
▶ σ ↑: harder instances =⇒ H ↑: overfitting.
▶ ϵ ↑: larger adversarial budget =⇒ H ↑: overfitting.

1L. Weng, et. al. ”Towards fast computation of certified robustness for relu networks”.
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Empirical Observation: How?

▶ Methods mitigating adversarial overfitting implicitly downplay hard instances.
▶ Weaker perturbation; adaptive and easier targets; smaller weights.

▶ Methods highlighting hard instances do not achieve true robustness.

Contributions:
Theory-backed analysis of adversarial overfitting in the lens of training data.
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Thanks!
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