Learning the Low-dimensional Space
via Rotations

...or doing PCA onto spheres!
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Motivating example: two circles in R’

The circular structure is lost in the procedure of
performing principal component analysis (PCA) and
reduce one dimension: why?

1. PCA maximizes global L? norm (i.e., variance)
AND
2. PCA assumes that the target space is also a plane.

Question 1: Can we perform dimension reduction by
solving a new optimization problem?
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Motivating example: two circles in R’

The circular structure is lost in the procedure of

SPCA, Noise Var.=0, MSE=0.12758

performing principal component analysis (PCA) and
reduce one dimension: why?
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2. PCA assumes that the target space 1s also a plane. . S

AND

Question 2: Can we perform dimension reduction by
projecting onto general manifolds/space instead of plane?



Projection onto spherical spaces S?

Suppose we want to perform the dimension reduction in such a

way that, the reduced data falls onto a lower dimensional sphere.
3 2
e.g.,R° to S

Solution 1: Our SRCA develop new loss function, and works
for sample size < target dimension.

Solution 2: Our observation 1s that the projection can be
achieved by solving a general optimization problem: target
space (sphere with center and radius) and optimal target
dimension can be determined simultaneously.
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Design a loss function: point-to-sphere distance

Assume that the axes of the target space is aligned with axes of Rd
(Eriksson and Jankowiak, 2021), the point-to-sphere distance (or
point-to-ellipsoid distance with ) can be written out as: -

2
e, Szler))? = (2 — ) W Ize(ai — ) + W (s — TV I/ Wy — ) — )

= (z; — ) W(x; — )+ — 27“\/(;52' — c)T\/WTII\/W(:UZ‘ —¢).

If we minimize this loss function for all data points z; then the
sphere  Sz(c,7) (of axes I with axes inset Z C {1,2,--- ,d}
center ¢, radius ) is what we want.
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Design a loss function: point-to-sphere distance

Strictly, this optimization problem is difficult, since we can choose 24 different axes sets
T C {1,2,---,d} to determine the target space.

We developed a relaxed problem constrained, with optional weight matrix .
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We use different rotation methods to meet our assumption of being axis-aligned, it

empirically/practically works well. However, learning optimal rotation 1s a long-standing
problem (Arora, 2009).

We called our method Spherical Rotation Component Analysis (SRCA).



SRCA is better than PCA since...

1. Theoretically guaranteed pairwise MSE minimization
1.e., the pairwise MSE between original points and the reduced point

2. Asymptotically guaranteed consistency and validity as an M-estimation problem

3. Empirically structural preserving
a. Original geometrical structures in data sets
b. Clustering preserving for most data sets
c. Co-ranking superiority as a dimension reduction method

4. Algorithmic validity for arbitrary sample size and target dimension.



Example dataset: Ecoli (sample size > dimension)

‘ SRCA is the best in cluster preserving ‘

Index Baseline SRCA SPCA PCA LLE tSNE UMAP

SC 0.257 0.267  0.260 0.200 0.209 0.293 0.290

CHI 133 192 190 215 46.6 376 376

DBI 1.49 1.59 1.58 256 240 1.37 1.32

SRCA is the best in MSE minimization

Dataset  Method/d' = 1 2 3 4

PCA 0.076693  0.035222  0.020522 0.00756

Ecoli SPCA 0.047776 0.032948  0.019648  0.01136

SRCA 0.076660 0.032799 0.018332 0.00756



Example dataset: GTEx (sample size < dimension)

‘ SRCA works for any target dimension
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Figure 4.2: Coranking measurements of three GTEx tissues for differ-
. . . . . . ’

ent reduced dimension, the horizontal axes are retained dimension d', the

vertical axes are score values.
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