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…or doing PCA onto spheres!
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Motivating example: two circles in 

The circular structure is lost in the procedure of 
performing principal component analysis (PCA) and 
reduce one dimension: why?

1. PCA maximizes global        norm (i.e., variance)

AND

2. PCA assumes that the target space is also a plane.

Question 1: Can we perform dimension reduction by 
solving a new optimization problem? 



Motivating example: two circles in 

The circular structure is lost in the procedure of 
performing principal component analysis (PCA) and 
reduce one dimension: why?

1. PCA maximizes global        norm (i.e., variance)

AND

2. PCA assumes that the target space is also a plane.

Question 2: Can we perform dimension reduction by 
projecting onto general manifolds/space instead of plane? 



Projection onto spherical spaces  

Suppose we want to perform the dimension reduction in such a 
way that, the reduced data falls onto a lower dimensional sphere. 
e.g.,        to 

● Solution 1: Our SRCA develop new loss function, and works 
for sample size < target dimension.

● Solution 2: Our observation is that the projection can be 
achieved by solving a general optimization problem: target 
space (sphere with center and radius) and optimal target 
dimension can be determined simultaneously. 



Design a loss function: point-to-sphere distance

Assume that the axes of the target space is aligned with axes of        
(Eriksson and Jankowiak, 2021), the point-to-sphere distance (or 
point-to-ellipsoid distance with W) can be written out as:

If we minimize this loss function for all data points       then the 
sphere                    (of axes I with axes in set                                  , 
center c, radius r) is what we want.



Design a loss function: point-to-sphere distance

Strictly, this optimization problem is difficult, since we can choose        different axes sets           

                                   to determine the target space.

We developed a relaxed problem constrained, with optional weight matrix W.   

We use different rotation methods to meet our assumption of being axis-aligned, it 
empirically/practically works well. However, learning optimal rotation is a long-standing 
problem (Arora, 2009).

We called our method Spherical Rotation Component Analysis (SRCA).



SRCA is better than PCA since…

1. Theoretically guaranteed pairwise MSE minimization 

i.e., the pairwise MSE between original points and the reduced point

2. Asymptotically guaranteed consistency and validity as an M-estimation problem
3. Empirically structural preserving

a. Original geometrical structures in data sets
b. Clustering preserving for most data sets
c. Co-ranking superiority as a dimension reduction method

4. Algorithmic validity for arbitrary sample size and target dimension.



Example dataset: Ecoli (sample size > dimension)
SRCA is the best in cluster preserving

SRCA is the best in MSE minimization



Example dataset: GTEx (sample size < dimension)
SRCA works for any target dimension


