Goal-Space Planning with Subgoal Models

The Problem Setting

The Problem Setting

How can we make the most of our experiences?

Background Planning

Background Planning

 "Planning is any computational process that uses a model to create or improve a policy." - Sutton & Barto, 2018

• "A model is anything the agent can use to predict how the environment will respond to its actions." - Sutton & Barto, 2018

Dyna

Challenges with Learned Models

- Exhaustive planning updates are expensive in huge state spaces
- Compounding error and invalid states when planning over longer horizons
- Doesn't directly prioritize what transitions to use
- Expensive to learn a world model, especially in high dimensional tasks
- Vanilla Dyna models a deterministic environment: $s, a \rightarrow r, s'$

Can we avoid some of these problems with background planning?

Abstract Models

Our Approach: Goal Space Planning

Results

Results: PinBall

Results: PinBall

Results: PinBall

Summary

- We need abstract planning for more sample efficient learning
- We present a technique to learn and use local, temporally abstract models.
- We propose reward shaping as a way to use such models of the environment.

See the Poster for:

- A new way to incorporate an abstract model into TD updates.
- An analysis of this by varying the:
 - Value-Based Learner
 - State space
 - Goal space
- Cases where such planning does and does not aid learning and adaptation to the world

The Team

Thank You!

