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Is Algorithm Selection Learnable for OOD Generalization?



Out-of-distribution (OOD) generalization
Why is it hard?

❗Different forms of distribution shifts do not permit a one-size-fits-all solution.
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Different algorithms excel under different conditions
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Can we learn to select the right algorithm?
A tantalizing possibility

🚨 Not clear how to select manually without extensive trial-and-error.


💡 We study the problem for a certain distribution of distribution shifts. 


💭 Key conjecture:  a learnable mapping from measurable dataset characteristics 
to the performance of algorithms exist.

(2) Dataset complexity characteristics

Dataset size


Data dimensionality

(1) Distribution shifts characteristics

Magnitudes of shifts

The strength of spurious feature

A real-number vector
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OOD-Chameleon
Algorithm selection as a (supervised) learning task

How to obtain the dataset?Input
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💡 We generate a collection of semi-synthetic 
datasets that represent diverse distribution shifts.

Input

TargetRunning zoo of
algorithms

Performance on
test setDataset of datasets

Extracting data
characteristics

Train

Test

Distribution
shifts

Descriptors of
training set

Label shift

Covariate 
shift

Spurious
correlation

…

Task 1 Task 2 Task 3

ERM GroupDRO

ReSample ERM

GroupDRO
… …

Mixup

(b)

(a)

(c) ReSample

…

Train robust
model on the taskTask 3

Input

TargetRunning zoo of
algorithms

Performance on
test setDataset of datasets

Extracting data
characteristics

Train

Test

Distribution
shifts

Descriptors of
training set

Label shift

Covariate 
shift

Spurious
correlation

…

Task 1 Task 2 Task 3

ERM GroupDRO

ReSample ERM

GroupDRO
… …

Mixup

(b)

(a)

(c) ReSample

…

Train robust
model on the taskTask 3

Input

TargetRunning zoo of
algorithms

Performance on
test setDataset of datasets

Extracting data
characteristics

Train

Test

Distribution
shifts

Descriptors of
training set

Label shift

Covariate 
shift

Spurious
correlation

…

Task 1 Task 2 Task 3

ERM GroupDRO

ReSample ERM

GroupDRO
… …

Mixup

(b)

(a)

(c) ReSample

…

Train robust
model on the taskTask 3

Input

TargetRunning zoo of
algorithms

Performance on
test setDataset of datasets

Extracting data
characteristics

Train

Test

Distribution
shifts

Descriptors of
training set

Label shift

Covariate 
shift

Spurious
correlation

…

Task 1 Task 2 Task 3

ERM GroupDRO

ReSample ERM

GroupDRO
… …

Mixup

(b)

(a)

(c) ReSample

…

Train robust
model on the taskTask 3

Trained 
algorithm 
selector

What is the objective?



A tool to construct distribution shifts
⭐ Repurposing existing datasets (e.g. CelebA) with constrained subsampling.
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OOD-Chameleon
Algorithm selection as a (supervised) learning task

How to obtain the dataset?


What is the objective?
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✅

💡 We generate a collection of semi-synthetic 
datasets that represent diverse distribution shifts.

💡 We formulate the algorithm selection as a 
(binary) multi-label classification.



Algorithm selection as a supervised learning task
Multi-label classification!

Binary cross-entropy

💡 Learn the mapping from measurable dataset descriptor to the 
suitability (relative performance) of the algorithm.

Classifi

Diff

* Devroye et al. A probabilistic theory of pattern recognition. 2013


regression?

Algorithms’ suitability on 
dataset    (multi-hot binary 
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OOD-Chameleon
Algorithm selection as a (supervised) learning task

How to obtain the dataset?


What is the objective?
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💡 We generate a collection of semi-synthetic 
datasets that represent diverse distribution shifts.
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Results
Vision datasets

⚙ Training is on a dataset of ~600 datasets from CelebA, and evaluation 
is on ~150 and ~130 unseen datasets from CelebA and MetaShift.  

📄 See our paper for many more results & details!

CelebA MetaShift



What does OOD-Chameleon learn?

Mild Strong
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Oversample

Undersample

Logits adjustment

ERM

LS

SC

CS LS
LS

💡 Learned decision rules are non-linear, and cannot be explained by 
memorization of a large number of samples.

(c.f. Linear)

(c.f. k-NN)



Takeaways

🔎 Algorithm selection is an often-overlooked key factor in OOD generalization.

It is non-linear, and transferrable to unseen datasets…

📍 Non-trivial (and learnable) mapping from measurable data properties to 
algorithm suitability exists. 

E.g. understanding the inductive bias of the algorithms…

⭐ These findings suggest possibilities for better leveraging and understanding 
existing OOD generalization algorithms. 

🛠 We release the tool to construct diverse distribution shifts for future research.


