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Out-of-distribution (OOD) generalization
Why is it hard?

! Different forms of distribution shifts do not permit a one-size-fits-all solution.
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Different algorithms excel under different conditions
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Can we to select the right algorithm?
A tantalizing possibility

& Not clear how to select manually without extensive trial-and-error.
. We study the problem for a certain distribution of distribution shifts.

. Key conjecture: a learnable mapping from measurable dataset characteristics
to the performance of algorithms exist.

(1) Distribution shifts characteristics (2) Dataset complexity characteristics



OOD-Chameleon

Algorithm selection as a (supervised) learning task
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How to obtain the dataset?

« We generate a collection of semi-synthetic
datasets that represent diverse distribution shifts.

What is the objective?



A tool to construct distribution shifts

Repurposing existing datasets (e.g. CelebA) with constrained subsampling.

Data size: 1000
Spurious correlation: 0.12, label shift: 0.26, covariate shift: 0.80
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Algorithm selection as a (supervised) learning task
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task

Algorithm selection as a

Multi-label classification!

min B Lion (6 (w, f(DY)), Ya)

|1 Py, —ming, Py, <€
Ya= {O else

. Learn the mapping from measurable dataset descriptor to
of the algorithm.
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Algorithm selection as a (supervised) learning task
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Results

Vision datasets

CelebA MetaShift
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© Training is on a dataset of ~600 datasets from CelebA, and evaluation
iIs on ~150 and ~130 unseen datasets from CelebA and MetaShift.



What does OOD-Chameleon learn?

. Learned decision rules are non-linear, and cannot be explained by
memorization of a large number of samples.
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Takeaways

» Algorithm selection is an often-overlooked key factor in OOD generalization.

? Non-trivial (and learnable) mapping from measurable data properties to
algorithm suitability exists.

These findings suggest possibilities for better leveraging and understanding
existing OOD generalization algorithms.

“ We release the tool to construct diverse distribution shifts for future research.



