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Performance degradation during pruning may be due to loss sharpness

▶ Pruning during training has proven effective in achieving
good sparse network (Hoefler et al. 2021)

▶ Still, they often lead to diminished model trainability
and generalization performance

▶ Recent studies analyzed these through the lens of
optimization geometry, hinting at the sharpness of the
loss as its cause (Keskar et al. 2017; Lee et al. 2021)
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Idea: explicitly penalize sharpness while pruning

▶ To recover this, we attend to sharpness minimization
(Foret et al. 2021)

▶ The aim is to induce flat minima, which is shown to
improve generalization effectively

▶ We propose Sparsification via ADMM with Flatness
Enforcement or Safe: a principled approach to
enforcing flatness simultaneously with sparsity
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Problem formulation for finding sparse and flat minima

We first formulate this as a sharpness-aware sparsity-constrained optimization problem:

min
∥x∥0≤d

max
∥ϵ∥2≤ρ

f(x+ ϵ),

where goal is to find a sparse solution x⋆ with atmost d non-zero elements that
minimizes the objective function in the whole ϵ-neighborhood, i.e., seek flat minima.
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Augmented Lagrangian based approach

To solve this, we form the augmented Lagrangian dual problem of the following:

max
u

,min
x,z

[
L(x, z, u) := max

∥ϵ∥2≤ρ
f(x+ ϵ) + I∥·∥0≤d(z)−

λ

2
∥u∥22 +

λ

2
∥x− z + u∥22

]
,

where we separate the sparsity-constraint satisfaction using variable z so that it can be
handled more easily.
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Alternating Direction Method of Multipliers

Applying dual ascent, where we minimize x and z in an alternating fashion, gives us
the following ADMM iterate:

xk+1 = argmin
x

max
∥ϵ∥2≤ρ

f(x+ ϵ) +
λ

2
∥x− zk + uk∥22

zk+1 = argmin
z

I∥·∥0≤d(z) +
λ

2
∥x− z + u∥22

uk+1 = uk + xk+1 − zk+1,
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x-minimization: iterative minimization while enforcing flatness

xk+1 = argmin
x

max
∥ϵ∥2≤ρ

f(x+ ϵ) +
λ

2
∥x− zk + uk∥22

We solve this iteratively using Sharpness-aware minimization (SAM) (Foret et al.
2021), where we approximately solve for ϵ through first-order Taylor approximation:

ϵ⋆(x) ≈ argmax
∥ϵ∥2≤ρ

f(x) + ϵ⊤∇f(x) = ρ
∇f(x)

∥∇f(x)∥2
.

Applying this back to the objective and applying gradient descent gives us the
following iteration for x-minimization

x
(t+1)
k = x

(t)
k − η(t)

[
∇f

(
x
(t)
k + ρ

∇f(x
(t)
k )

∥∇f(x
(t)
k )∥2

)
+ λ(x

(t)
k − zk + uk)

]
,
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z-minimization: Euclidean projection onto sparsity constraint

z-minimization corresponds to projecting xk+1 + uk onto the sparsity constraint in
terms of Euclidean distance

zk+1 = argmin
z

I∥·∥0≤d(z) +
λ

2
∥xk+1 − z + uk∥22

= proj∥·∥0≤d(xk+1 + uk).

This leads to the classic hard thresholding operator, where we zero out except d
elements with the largest magnitude
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Safe+: Generalized projection

However, this magnitude-based projection often yields subpar performance in practice.

To improve this, we introduce a generalized distance 1
2∥ · ∥

2
P with diagonal positive

definite matrix P:

zk+1 = projP∥·∥0≤d(xk+1 + uk)

:= argmin
∥z∥0≤d

1

2
∥z − (xk+1 + uk)∥2P

= argmin
∥z∥0≤d

1

2
(z − (xk+1 + uk))

⊤P(z − (xk+1 + uk)).
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Safe+: Generalized projection (cont.)

Criteria P

Magnitude I
OBD diag(H)
SNIP diag(∇f∇f⊤)
Wanda diag(A⊤A)

▶ This generalized projection framework allows us to
employ various saliency scores within the projection step

▶ Here we use this primarily for LLM pruning, though it is
generally applicable to other domains
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Final algorithm: Safe and Safe+

Algorithm Safe and Safe+ algorithms

Require: Target parameter count d, total train iteration T ,
dual-update interval K, learning rate η(t), perturbation
radius ρ, penalty parameter λ, importance matrix P.

1: Initialize x(0)

2: u = 0
3: for t in T do
4: if tmodK = 0 then
5: if Safe then
6: z = proj∥·∥0≤d(x

(t+1) + u)
7: else if Safe+ then
8: z = projP∥·∥0≤d(x

(t+1) + u)
9: end if

10: u = u+ x(t+1) − z
11: end if
12: x(t+1/2) = x(t) − η(t)∇f

(
x(t) + ρ · ∇f(x(t))

∥∇f(x(t))∥2

)
13: x(t+1) = x(t+1/2) − η(t)λ(x(t) − z + u)
14: end for
15: return proj∥·∥0≤d(x

(T )) =0

▶ Registers sparse point closest to the current x
to z every few steps

▶ Penalizes x iterate to move slightly closer to z
during flatness-inducing minimization.

▶ This gradually moves x towards sparsity during
flatness induction without sudden changes,
yielding a sparse and flat minima.
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Convergence analysis

Corollary 1. (Convergence of Safe) Suppose that f is smooth and weakly convex.
Assume further that δ is chosen large enough so that δ−1β2 − (δ − µ)/2 < 0. Let
(x̄, z̄, ū) be a limit point of Safe algorithm. Then x̄ is a δ-stationary point of the
sparsity-constrained optimization problem.
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Result: Safe finds sparse and flat solutions
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(a-b) Weight distributions of densely-trained model and model trained with Safe, and (c-d)
loss landscape and maximum Hessian eigenvalue of minima found by ADMM and Safe. Safe
yields sparse and flat solutions.
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Result: Improved generalization performance in Image classification
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Safe outperforms other baselines in various image classification tasks
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Result: Improved generalization performance in LLM post-training pruning

LLaMa-2 LLaMa-3

7B 13B 8B
Sparsity Method Wikitext/C4 Wikitext/C4 Wikitext/C4

0% Dense 5.47 / 7.26 4.88 / 6.72 6.23 / 9.53

50%

Magnitude 16.03 / 21.33 6.82 / 9.37 134.20 / 273.3
SparseGPT 6.99±0.03 / 9.20±0.03 6.06±0.03 / 8.20±0.01 9.36±0.11 / 13.96±0.02

Wanda 6.92±0.01 / 9.23±0.00 5.98±0.01 / 8.28±0.01 9.71±0.03 / 14.88±0.04

ALPS 6.87±0.01 / 8.98±0.00 5.96±0.02 / 8.09±0.04 9.05±0.12 / 13.40±0.06

Safe 6.78±0.01 / 8.93±0.00 5.76±0.01 / 7.85±0.02 9.59±0.06 / 14.60±0.04

Safe+ 6.56±0.01 / 8.71±0.00 5.67±0.01 / 7.74±0.01 8.62±0.06 /13.26±0.06

60%

Magnitude 1864 / 2043 11.81 / 14.62 5335 / 7438
SparseGPT 10.19±0.08 / 12.86±0.05 8.31±0.09 / 10.85±0.09 15.46±0.40 / 21.25±0.18

Wanda 10.75±0.07 / 13.87±0.01 8.43±0.07 / 11.55±0.01 22.06±0.19 / 32.28±0.37

ALPS 9.55±0.00 / 11.24±0.03 7.54±0.03 / 9.87±0.05 14.03±0.35 / 18.72±0.15

Safe 9.20±0.04 / 11.51±0.04 7.18±0.03 / 9.59±0.03 15.90±0.25 / 22.26±0.16

Safe+ 8.30±0.06 /10.59±0.00 6.78±0.04 / 9.02±0.15 12.18±0.22 /17.30±0.02

4:8

Magnitude 15.91 / 31.61 7.32 / 9.96 212.5 / 336.3
SparseGPT 8.42±0.05 / 10.73±0.03 7.02±0.06 / 9.33±0.04 12.16±0.20 / 17.36±0.06

Wanda 8.64±0.03 / 11.35±0.01 7.01±0.02 / 9.70±0.03 13.84±0.04 / 21.14±0.06

ALPS 8.11±0.09 / 10.21±0.04 6.81±0.07 / 9.33±0.04 11.38±0.17 / 16.10±0.10

Safe 8.21±0.01 / 10.61±0.04 6.60±0.02 / 8.95±0.02 12.15±0.14 / 17.90±0.15

Safe+ 7.59±0.03 / 9.88±0.01 6.37±0.03 / 8.61±0.01 10.51±0.13 /15.67±0.02

2:4

Magnitude 37.77 / 74.70 8.88 / 11.72 792.8 / 2245
SparseGPT 11.00±0.20 / 13.54±0.03 8.78±0.09 / 11.26±0.11 15.87±0.32 / 22.45±0.12

Wanda 12.17±0.02 / 15.60±0.11 9.01±0.04 / 12.40±0.01 23.03±0.38 / 34.91±0.31

ALPS 9.99±0.19 / 12.04±0.04 8.16±0.17 / 10.35±0.18 14.53±0.33 / 19.74±0.18

Safe 10.53±0.13 / 13.20±0.07 7.64±0.05 / 10.10±0.01 17.49±0.27 / 24.45±0.13

Safe+ 8.96±0.07 /11.34±0.03 7.20±0.04 / 9.52±0.01 13.39±0.23 /19.03±0.01

▶ Safe achieves competitive
performance, while Safe+

outperforms baselines across all
settings.
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Results: Robustness under label noise

Noise ratio
Sparsity Method 25% 50% 75%

70%
ADMM 77.00±0.91 59.18±0.55 32.62±0.89

Safe 90.58±0.30 86.51 ±0.16 67.01±0.54

80%
ADMM 76.18±0.56 62.67±0.38 32.86±1.12

Safe 91.25±0.12 86.55±0.07 66.49±0.56

90%
ADMM 79.40±0.12 66.64±0.13 36.84±0.94

Safe 90.68±0.21 86.49±0.06 64.72 ±0.61

95%
ADMM 77.71±0.52 67.10±1.37 39.68±1.44

Safe 89.86±0.11 85.18±0.15 64.25±0.36

▶ Noisy label training. Validation accuracy is
measured for sparse models trained with
ADMM and Safe under various levels of label
noise and sparsity.

▶ Safe is much more robust to label noise.
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Results: Robustness to common image corruptions and adversarial attacks

Common corruption (avg.) Adversarial

Sparsity Method intensity=3 intensity=5 l∞-PGD l2-PGD

90%
ADMM 70.06±0.03 52.01±0.38 49.81±1.02 49.71±1.06

Safe 73.98±0.09 55.11±0.27 56.43±1.03 56.36±1.11

95%
ADMM 68.87±0.25 50.56±0.07 49.84±1.78 49.68±1.79

Safe 72.92±0.41 54.86±0.51 51.40±0.89 51.36±0.94

98%
ADMM 65.46±0.24 48.65±0.04 43.33±1.59 43.42±1.60

Safe 68.20±0.47 49.96±0.83 43.34±0.90 43.41±1.03

99%
ADMM 59.21±0.47 43.81±0.44 30.29±0.64 30.32±0.58

Safe 66.02±0.56 49.34±1.03 43.70±1.28 32.70±1.28

99.5%
ADMM 55.72±0.44 41.55±0.78 23.25±1.92 23.25±1.85

Safe 56.58±0.36 42.27±0.63 29.48±0.68 29.45±0.74

▶ Evaluation on corrupted data. CIFAR-10C is
used for common corruptions, and l∞ and l2
PGD attacks are used to generate adversarial
corruption on the validation set of CIFAR-10.

▶ Safe improves robustness over naturally and
adversarially corrupted images.
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Results: Comparison with other SAM-based pruners

Sparsity

Method 95% 98% 99% 99.5%

IMP+SAMlinear 80.30±0.12 36.03±4.19 18.30±2.80 13.80±0.52

IMP+SAMcubic 92.50±0.05 89.24±0.06 83.74±0.14 73.73±0.30

CrAM 90.18±1.80 69.53±12.36 45.17±20.86 10.00±0.00

CrAM+ 93.62±0.06 91.75±0.41 88.82±0.18 81.30±0.56

Safe 92.59±0.09 89.58±0.10 87.47±0.07 79.55±0.13

Safe+SG 92.40±0.06 90.09±0.13 89.13±0.06 85.85±0.09

▶ Comparison with IMP+SAM, CrAM, and
CrAM+ on ResNet-20/CIFAR-10.

▶ Safe+SG, which extends Safe using a similar
technique as CrAM+, outperforms most
baselines at moderate sparsity and all baselines
at extreme sparsity.
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Conclusion

▶ We propose Safe and Safe+: an optimization-based approach to find flat and
sparse minima to improve pruning

▶ It improves performance across standard image classification and language model
post-training pruning tasks

▶ Safe also shows robust performance under label noise training, common image
corruptions, and adversarial attacks

▶ Finally, compared to other SAM-based pruners, it shows strong performance even
at extreme sparsities unlike other baselines.

Pytorch Jax
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