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Performance degradation during pruning may be due to loss sharpness

» Pruning during training has proven effective in achieving
good sparse network (Hoefler et al. 2021)

> Still, they often lead to diminished model trainability
and generalization performance

» Recent studies analyzed these through the lens of
optimization geometry, hinting at the sharpness of the
loss as its cause (Keskar et al. 2017; Lee et al. 2021)
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Idea: explicitly penalize sharpness while pruning

» To recover this, we attend to sharpness minimization
(Foret et al. )

i L W) » The aim is to induce flat minima, which is shown to

] improve generalization effectively

» We propose Sparsification via ADMM with Flatness
Enforcement or SAFE: a principled approach to
enforcing flatness simultaneously with sparsity
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Problem formulation for finding sparse and flat minima

We first formulate this as a sharpness-aware sparsity-constrained optimization problem:

min max
lzllo<d [lell2<p

where goal is to find a sparse solution x* with atmost d non-zero elements that
minimizes the objective function in the whole e-neighborhood, i.e., seek flat minima.
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Augmented Lagrangian based approach

To solve this, we form the augmented Lagrangian dual problem of the following:

. A A
max, min | £(z, 2,u) == max [+ )+ Ipozalz) = 5l + 5z — =+ ul],
uwe lell<p = 2 2

where we separate the sparsity-constraint satisfaction using variable z so that it can be
handled more easily.
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Alternating Direction Method of Multipliers

Applying dual ascent, where we minimize x and z in an alternating fashion, gives us
the following ADMM iterate:

A 2
et = argmin max f(z+€) + glle =2+ il

. A
Zp1 = argmind|.,<q(2) + 5”.1,‘ — z+ul?
z

Ukl = Uk + Thtr1 — 2kt
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x-minimization: iterative minimization while enforcing flatness

. A 9
Th1 = argmin max f(z+ ) + 5 [lz — 2 + g}
z  lell2<p 2

We solve this iteratively using Sharpness-aware minimization (SAM) (Foret et al.
), where we approximately solve for € through first-order Taylor approximation:

€ (r) =~ X €'V = AASZ:KEZZZA,.
() = argmax f(z) + € V@) = P15 FIL

Applying this back to the objective and applying gradient descent gives us the
following iteration for z-minimization

(t)
21 — O _ !Vf(z,(f) +p Vf(ﬂ«"(;z) ) ) @
IV f ()7 ]2
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z-minimization: Euclidean projection onto sparsity constraint

z-minimization corresponds to projecting xky1 + ur onto the sparsity constraint in
terms of Euclidean distance

. A
Zp+1 = argmind| <q(2) + §||5'31c+1 — 2+ w3
z

= Projj.jjo<d(Tr+1 + uk).

This leads to the classic hard thresholding operator, where we zero out except d
elements with the largest magnitude
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SAFE": Generalized projection

However, this magnitude-based projection often yields subpar performance in practice.

To improve this, we introduce a generalized distance %H -||% with diagonal positive
definite matrix P:

P
Zk1 = PrOjj.y<a(Th+1 + Uk)

1
= argmin = ||z — (g1 + u)|p
llzllo<d
1
= argmin = (z — (zp41 + ug)) "P(2 — (Tpp1 + uz)).-
lIzllo<d
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SAFE™: Generalized projection (cont.)

Criteria P » This generalized projection framework allows us to
Magnitude I : : i : :

employ various saliency scores within the projection ste
OBD diag(H) ploy satiency ? ProJ tep
SNIP diag(VfVfT) > Here we use this primarily for LLM pruning, though it is
Wanda diag(ATA) generally applicable to other domains
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Final algorithm: SAFE and SAFE™

Algorithm SAFE and SAFE™ algorithms

Require: Target parameter count d, total train iteration 7',
dual-update interval K, learning rate 7(*), perturbation
radius p, penalty parameter )\, importance matrix P.

L '"itia(')‘ze a® > Registers sparse point closest to the current x
20 u=
3 for tin T do to z every few steps
4 if tmod K = 0 then . . .
5. if SAFE then » Penalizes z iterate to move slightly closer to z
8 2 = projyjy<a(a Y + ) during flatness-inducing minimization.
7 else if SAFET then
8 Z_:fp""jﬁogd(w““)+"> » This gradually moves x towards sparsity during
9: end 1 . . .
100 w—ut ), flatness induction without sudden changes,
11 end if H H S
2 @M/ = o) O (o0 4 p. ZHL) yielding a sparse and flat minima.
N Sz 2

13 2D = g2 OO — 2 4 y)
14: end for
15: return proj| . <q(z(") =0
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Convergence analysis

Corollary 1. (Convergence of SAFE) Suppose that f is smooth and weakly convex.
Assume further that & is chosen large enough so that 67182 — (§ — u)/2 < 0. Let
(Z, z,u) be a limit point of SAFE algorithm. Then Z is a d-stationary point of the

sparsity-constrained optimization problem.
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Result: SAFE finds sparse and flat solutions

SGD weight distribution SAFE weight distribution
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(a-b) Weight distributions of densely-trained model and model trained with SAFE, and (c-d)

loss landscape and maximum Hessian eigenvalue of minima found by ADMM and SAFE. SAFE
yields sparse and flat solutions.
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Result: Improved generalization performance in Image classification

VGG-19 / CIFAR-10 ResNet-20 / CIFAR-10

VGG-19 / CIFAR-100 ResNet-32 / CIFAR-100
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SAFE outperforms other baselines in various image classification tasks
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Result: Improved generalization performance in LLM post-training pruning

LLaMa-2 LLaMa-3
78 138 88
Sparsity  Method Wikitext/C4 Wikitext/C4 Wikitext/C4
0%  Dense 5.47 / 726 4.88 / 672 6.23 / 953
Magnitude ~ 16.03 /2133 6.82 / 937 134.20 /2733
SparseGPT 6.99.1003 / 9201003 6.06.10.03 / 8.20+0.01 9.36.0.11 / 13.9650.02
Wanda 6.92:001 / 9231000 598001 / 828001  9.7l:oos / 14.88x0.04
50%  ALPS 687001 / 898:000 5961002 / 809001 9054012 / 13.40:006
SAFE 6781001 / 8931000 5761001 / 7.85:002 9591006 / 14601001
Saret 6565001 / 8.71io0 5670001 / T74z00 8621008 /13265000
Magnitude 1864 / 2043 11.81 / 14.62 5335 / 7438
SparseGPT  10.19400s / 12864005 8.3lugos / 10854009 15464040 [ 21254015
Wanda 10754007 / 13872001 843007 / 11.55:001 22.064019 / 32.28037
60%  ALPS 9551000 /11245003 7541003 / 9.87:005 14.03:035 / 18724015
SAFE 9204001 /1151001 Zd8soos / 959005 15904025 / 22261016
SarEt 8304005 /10.59:1000 6.781001 / 9.02:015 1218102 /17.30400
Magnitude  15.91 / 3161 732 / 9.96 2125 /3363
SparseGPT 8424005 / 10734003 7.021006 / 12164020 / 17-3610.06
Wanda 8.64.003 /11352001 7.0ligoe [/ 9.70 13844001 / 21142006
48 ALPS 811009 /102Lc001 68lio0r / 933001 1L38roar /16104010
SAFE 82Lig01 [ 106lioos 6601002 / 895s00e 12151014 / 1790s015
Saret 759005 / 9881001 6.374005 / 8.61ig0 10.51.055 /15.67400
Magnitude ~ 37.77 /7470 8.88 /1172 7928 / 2245
SparseGPT  11.004020 / 13542005  8.78x000 / 1126011 1587403 / 22451012
Wanda 12174002 / 15.602011  9.01lig0s / 12.4 23.03403s [ 3491403,
2:4 ALPS 9994019 /12041004 8161017 / 10.35:01s 14531033 / 19.74:0.18
SAFE 10534013 / 13.204007  Z64100s [/ 1010s001 17494027 / 24454013
SarE+ 8961007 /11341005 7.20400s / 9.52:001 13391023 /19.03.00

> SAFE achieves competitive
performance, while SAFE™
outperforms baselines across all
settings.
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Results: Robustness under label noise

Noise ratio
Sparsity  Method 25% 50% 75%
70% ADMM  77.00:001 59181055 3262508
?  SAFE  90.58.03 86.51 1016 67.01i5
0% ADMM 7618105 6267s03s  32.86:11
" SAFE 91.25.;; 86.55:007  66.49105
00% ADMM  79.404012  66.6440.13 36.8410.94
®  SAFE  90.68.021 86.49.005 64.72 i1
959 ADMM 777Lis 6710115 3068414
®  SAFE  80.86i011 85181015 64.25.03

» Noisy label training. Validation accuracy is
measured for sparse models trained with
ADMM and SAFE under various levels of label
noise and sparsity.

> SAFE is much more robust to label noise.
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Results: Robustness to common image corruptions and adversarial attacks

Common corruption (avg.) Adversarial
Sparsity Method intensity=3 intensity=5  l,,-PGD 1,-PGD
0% ADMM  7006:00s  520Ligss  498la  49.71iios
®  SAFE  73.98.009 55.11i057 56.43i103 56.36.41.11
059 ADMM  6887:02 50.56:007  49.84si7s  49.68:17
°  SAFE 7292041 54.86105 51.80.05 51.36:00:
0 ADMM  65.46:05  4865:001  433Buisy 434214
©  SAFE  68.20.047 49.96i0s3 43.34.090 434liig3
99% ADMM  5921soy;  438lis  30.29:00  30.32:05
®  SAFE  66.02.05 49.341103 43701125 32704128
9055 ADMM 8572:04 4LSbsors  2325.1m  2325:s
® SAFE  56.581035 42.27i0063 29.48:100s  29.45i071

» Evaluation on corrupted data. CIFAR-10C is
used for common corruptions, and I, and Iy
PGD attacks are used to generate adversarial
corruption on the validation set of CIFAR-10.

» SAFE improves robustness over naturally and
adversarially corrupted images.
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Results:

Comparison with other SAM-based pruners

Method

— » Comparison with IMP+SAM, CrAM, and
95% 98% ’ y99% 99.5% CrAM™ on ResNet—20/CIFAR-10

IMP+SAMinear

8930012 3003010 1830u2s0 1380052 » SAFE,sg, which extends SAFE using a similar

018150 69531250 4517smss 1000200 technique as CrAM™, outperforms most

IMP+SAMcupic 92501005 89241006 83.741014  73.731030
CrAM

CrAM* 93.62:006 91.75:041 88.82:018 81.30+056
SAFE 92.59:0.00 89.5810.10 87.47+007  79.55+0.3
SAFE;sg

baselines at moderate sparsity and all baselines
92.404006 90.094013 89.131006 85.8510.09 at extreme Sparsity.
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Conclusion

» We propose SAFE and SAFE™: an optimization-based approach to find flat and
sparse minima to improve pruning

» It improves performance across standard image classification and language model
post-training pruning tasks

» SAFE also shows robust performance under label noise training, common image
corruptions, and adversarial attacks

» Finally, compared to other SAM-based pruners, it shows strong performance even
at extreme sparsities unlike other baselines.

Pytorch
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