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Reinforcement learning (RL) [Sutton & Barto, 2018]:
* An agent interacts with an unknown environment through time
» Goal of maximizing the expected cumulative reward
» Applications: robotics, autonomous driving, ...

Classic RL: observe reward for each state-action pair

However, in real-world applications, e.g., autonomous driving:
« |t is difficult and costly to collect a reward for each state-action pair

Prior works — RL with trajectory feedback [Efroni et al., 2021; Chatter;ji et
al., 2021]:

* Observe a reward signal at the end of each trajectory

The relationship between feedback frequency and
the performance of RL algorithms is still unknown
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RL with Segment Feedback

Episodic Markov decision process (MDP):
* H: the length of each episode
* 7(S,a) € [~Tax Tmax]: Unknown reward function. Denote 6" := [r(s, a)](s q)esxa
* p(s’|s, a): transition distribution
« 1y (s): policy, specify what action to take in state s at step h

Value functions: V¥ (s) = E[Xi_,, (s, ap)|sp, = s, m]. Optimal policy: 7* = argmax V' (s) forallh € [H]and s € §
YA

Segment feedback: each episode is equally divided into m segments, observe reward feedback at the end of
each segment:
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» Binary feedback y;: Pr[y; = 1] = Trexp (-G 07 Prly; = 0] =1 — Pr[y; = 1] (Thumbs up/down 0 o)
. Sum feedback: R; = (¢™)T6* + zf( i,
=(1— —
o © L K ;. the i-th trajectory segment, where i € [m]
Goal: minimize regret R(K) = Y5, -1 (V] (s1) = V{* (51)) ¢ (s, a): the number of times (s, a) is visited in (sub-)trajectory T
segment feedback ‘ ‘ ‘ ‘
aH a a
d; Az a4z m (m—Z)% (m—l)% AH
“ : ! -
S1 S2 53 SH S(m_z)ﬂ S(m_l)ﬂ SH
transition A\ m m m



Algorithm for Binary Feedback

Known transition
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Algorithm SegBiTS:
« Forepisode k =1, ..., K:

1

* O arg;nin - ng_:l 2i=1 log(

-
k' k'
* Lp_q <_Zk’—1 ?;1¢T" (qbri ) + all

) +3 /1||9||z

1+exp(—y¥ (qu ) 6)

« Sample noise &, ~ N(0,a - v(k —1)% - 21)

* O« Opq + &
« % « argmax(¢™)T 6,
T

* Play episode k with policy . Observe trajectory t® and binary segment feedback {yl }

~

i€[m]
_/

A: regularization parameter

Q= exp( T’:‘lax)+exp( HT’Z“’C) + 2
v(k — 1): part of the confidence radius for §,_,
@™ (s,a): the expected number of times (s, a) is visited in an episode under 4



Algorithm for Sum Feedback
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Algorithm E-LinUCB:

 Let w* € Ag and z* be the optimal solution and optimal value of the optimization

QW Q. Erperl$™ (@)™

mell

min /I E-experimental design
WEA[

Ko < 0((z*)*H%)

Round the continuous sampling distribution w* into K° discrete sampling policies (r?, ..., w%0)

Play K, episodes with policies r1, ..., 7¥o. Observe trajectories 1, ..., t®0 and sum feedback

K
{Ril}ie[m]’ ""{Ri O}ie[m]

For episode k = K, + 1, ..., K:

-
k' k' K
o Bp_q < (/U+Zk,_1 mo ¢t (¢Ti ) ) Zk’—l m ¢ RX

¢ By A+ B gt ()

o 1k« argmax((cp”)Tek 1+Bk—1)- ||</>"||z 1 ) where B(k — 1) is part of the confidence radius for 8,,_,
m€ell

« Play episode k with policy *. Observe trajectory T and sum feedback {R{‘}ie[m]
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Theoretical Results
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Theorem 1. With probability at least 1 — §, for any K > 0, the regret of algorithm

SegBITS is bounded by

2
0 (exp (H;r::x> v(K)/|S||A] - (\/KmlSIIJlI max {nlja/l' 1} + H\/g))
\ J

Theorem 2. With probability at least 1 — §, for any K > 0, the regret of algorithm
E-LinUCB is bounded by

O(|S||AIVHK + (z*)?H5 + |S||A|H)

« Under binary feedback, increasing m significantly helps accelerate learning
'—_@ « Under sum feedback, surprisingly, increasing m does not help accelerate learning much
/ . iy . o
» Lower bounds and extensions to the unknown transition setting are also provided in
our paper

@ « The influence of the number of segments m on learning performance:
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Empirical Evaluation
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« Study a general model called RL with segment feedback

« Bridge the gap between per-state-action feedback in classic RL and trajectory feedback
seamlessly

» Design algorithms SegBiTS and E-LinUCB for binary and sum feedback settings,
respectively

* Our theoretical and empirical results exhibit how the number of segments m
impacts learning performance:

« Under binary feedback, increasing m significantly helps accelerate learning

« Under sum feedback, surprisingly, increasing m does not help accelerate learning much
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