

Reinforcement Learning with Segment Feedback

Yihan Du UIUC

Anna Winnick Stanford University

Gal Dalal Nvidia

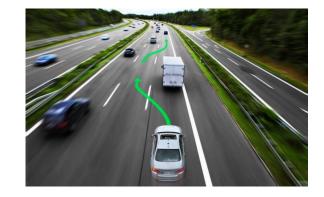
Shie Mannor Technion/Nvidia

R. Srikant UIUC

Speaker: Yihan Du duyihan1996@gmail.com ICML 2025

Motivation

- Reinforcement learning (RL) [Sutton & Barto, 2018]:
 - An agent interacts with an unknown environment through time
 - Goal of maximizing the expected cumulative reward
 - Applications: robotics, autonomous driving, ...
- Classic RL: observe reward for each state-action pair
- However, in real-world applications, e.g., autonomous driving:
 - It is difficult and costly to collect a reward for each state-action pair
- Prior works RL with trajectory feedback [Efroni et al., 2021; Chatterji et al., 2021]:
 - Observe a reward signal at the end of each trajectory

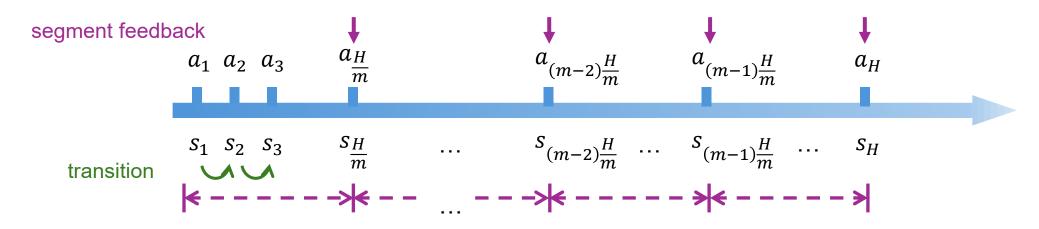


The relationship between feedback frequency and the performance of RL algorithms is still unknown

RL with Segment Feedback

- Episodic Markov decision process (MDP):
 - *H*: the length of each episode
 - $r(s, a) \in [-r_{max}, r_{max}]$: unknown reward function. Denote $\theta^* \coloneqq [r(s, a)]_{(s, a) \in S \times A}$
 - p(s'|s,a): transition distribution
 - $\pi_h(s)$: policy, specify what action to take in state s at step h
- Value functions: $V_h^{\pi}(s) = \mathbb{E}[\sum_{t=h}^H r(s_t, a_t) | s_h = s, \pi]$. Optimal policy: $\pi^* = \underset{\pi}{\operatorname{argmax}} V_h^{\pi}(s)$ for all $h \in [H]$ and $s \in \mathcal{S}$
- Segment feedback: each episode is equally divided into m segments, observe reward feedback at the end of each segment:
 - Binary feedback y_i : $\Pr[y_i = 1] = \frac{1}{1 + \exp(-(\phi^{\tau_i})^T \theta^*)}$, $\Pr[y_i = 0] = 1 \Pr[y_i = 1]$ (Thumbs up/down 1)
 - Sum feedback: $R_i = (\phi^{\tau_i})^{\mathsf{T}} \theta^* + \sum_{t=(i-1)\cdot \frac{H}{m}+1}^{i\cdot \frac{H}{m}} \varepsilon_t$
- Goal: minimize regret $\mathcal{R}(K) \coloneqq \sum_{k=1}^K (V_1^{\pi^*}(s_1) V_1^{\pi^k}(s_1))$

 τ_i : the *i*-th trajectory segment, where $i \in [m]$ $\phi^{\tau}(s, a)$: the number of times (s, a) is visited in (sub-)trajectory τ



Algorithm for Binary Feedback

Known transition

Algorithm SegBiTS:

- For episode k = 1, ..., K:
 - $\hat{\theta}_{k-1} \leftarrow \underset{\theta}{\operatorname{argmin}} \sum_{k'=1}^{k-1} \sum_{i=1}^{m} \log(\frac{1}{1 + \exp(-y_i^{k'} (\phi^{\tau_i^{k'}})^{\mathsf{T}} \theta)}) + \frac{1}{2} \lambda \|\theta\|_2^2$
 - $\Sigma_{k-1} \leftarrow \sum_{k'=1}^{k-1} \sum_{i=1}^{m} \phi^{\tau_i^{k'}} \left(\phi^{\tau_i^{k'}} \right)^{\mathsf{T}} + \alpha \lambda I$
 - Sample noise $\xi_k \sim \mathcal{N}(0, \alpha \cdot v(k-1)^2 \cdot \Sigma_{k-1}^{-1})$
 - $\tilde{\theta}_k \leftarrow \hat{\theta}_{k-1} + \xi_k$
 - $\pi^k \leftarrow \underset{\pi}{\operatorname{argmax}} (\phi^{\pi})^{\top} \hat{\theta}_k$
 - Play episode k with policy π^k . Observe trajectory τ^k and binary segment feedback $\left\{y_i^k\right\}_{i\in[m]}$
 - λ: regularization parameter
 - $\alpha := \exp\left(\frac{Hr_{max}}{m}\right) + \exp\left(-\frac{Hr_{max}}{m}\right) + 2$
 - v(k-1): part of the confidence radius for $\hat{\theta}_{k-1}$
 - $\phi^{\pi}(s,a)$: the expected number of times (s,a) is visited in an episode under π

Algorithm for Sum Feedback

Known transition

Algorithm E-LinUCB:

• Let $w^* \in \Delta_{\Pi}$ and z^* be the optimal solution and optimal value of the optimization

$$\min_{w \in \Delta_{\Pi}} \left\| \left(\sum_{\pi \in \Pi} w(\pi) \left(\sum_{i=1}^{m} \mathbb{E}_{\tau_{i} \sim \pi} [\phi^{\tau_{i}} (\phi^{\tau_{i}})^{T}] \right) \right)^{-1} \right\| \qquad \text{$/$E-experimental design}$$

- $K_0 \leftarrow \tilde{O}((z^*)^2 H^4)$
- Round the continuous sampling distribution w^* into K^0 discrete sampling policies $(\pi^1, ..., \pi^{K_0})$
- Play K_0 episodes with policies π^1, \dots, π^{K_0} . Observe trajectories $\tau^1, \dots, \tau^{K_0}$ and sum feedback $\left\{R_i^1\right\}_{i \in [m]}, \dots, \left\{R_i^{K_0}\right\}_{i \in [m]}$
- For episode $k = K_0 + 1, ..., K$:

•
$$\hat{\theta}_{k-1} \leftarrow \left(\lambda I + \sum_{k'=1}^{k-1} \sum_{i=1}^{m} \phi^{\tau_i^{k'}} \left(\phi^{\tau_i^{k'}}\right)^{\mathsf{T}}\right)^{-1} \sum_{k'=1}^{k-1} \sum_{i=1}^{m} \phi^{\tau_i^{k'}} R_i^{k'}$$

- $\Sigma_{k-1} \leftarrow \lambda I + \sum_{k'=1}^{k-1} \sum_{i=1}^{m} \phi^{\tau_i^{k'}} \left(\phi^{\tau_i^{k'}} \right)^{\mathsf{T}}$
- $\pi^k \leftarrow \underset{\pi \in \Pi}{\operatorname{argmax}} ((\phi^{\pi})^{\mathsf{T}} \hat{\theta}_{k-1} + \beta(k-1) \cdot \|\phi^{\pi}\|_{\Sigma_{k-1}^{-1}})$, where $\beta(k-1)$ is part of the confidence radius for $\hat{\theta}_{k-1}$
- Play episode k with policy π^k . Observe trajectory τ^k and sum feedback $\left\{R_i^k\right\}_{i\in[m]}$

Theoretical Results

Theorem 1. With probability at least $1 - \delta$, for any K > 0, the regret of algorithm SegBiTS is bounded by

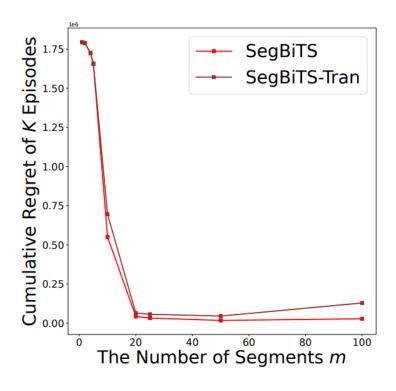
$$\tilde{O}(\exp\left(\frac{Hr_{max}}{2m}\right)\nu(K)\sqrt{|\mathcal{S}||\mathcal{A}|}\cdot(\sqrt{Km|\mathcal{S}||\mathcal{A}|}\max\left\{\frac{H^2}{m\alpha\lambda},1\right\}+H\sqrt{\frac{K}{\alpha\lambda}}))$$

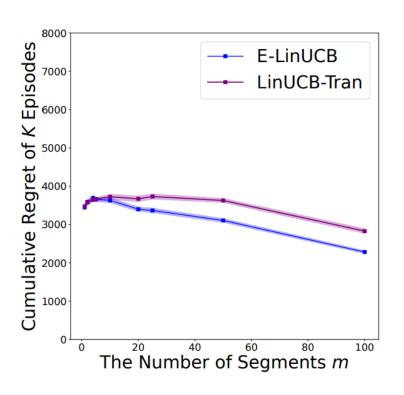
Theorem 2. With probability at least $1 - \delta$, for any K > 0, the regret of algorithm E-LinUCB is bounded by

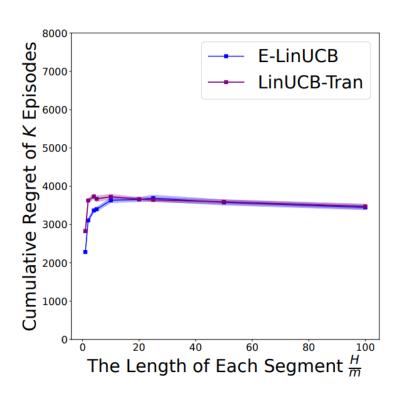
$$\tilde{O}(|\mathcal{S}||\mathcal{A}|\sqrt{HK} + (z^*)^2H^5 + |\mathcal{S}||\mathcal{A}|H)$$

- The influence of the number of segments m on learning performance:
 - Under binary feedback, increasing m significantly helps accelerate learning
 - Under sum feedback, surprisingly, increasing m does not help accelerate learning much
- Lower bounds and extensions to the unknown transition setting are also provided in our paper

Empirical Evaluation







Binary feedback

Sum feedback

Conclusion

- Study a general model called RL with segment feedback
 - Bridge the gap between per-state-action feedback in classic RL and trajectory feedback seamlessly
- Design algorithms SegBiTS and E-LinUCB for binary and sum feedback settings, respectively
- Our theoretical and empirical results exhibit how the number of segments m impacts learning performance:
 - Under binary feedback, increasing m significantly helps accelerate learning
 - Under sum feedback, surprisingly, increasing m does not help accelerate learning much

References

- Yihan Du, Anna Winnicki, Gal Dalal, Shie Mannor, R. Srikant. Reinforcement Learning with Segment Feedback. ICML, 2025.
- Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018.
- Efroni, Y., Merlis, N., and Mannor, S. Reinforcement learning with trajectory feedback.
 AAAI, 2021.
- Chatterji, N., Pacchiano, A., Bartlett, P., and Jordan, M. On the theory of reinforcement learning with once-per-episode feedback. NeurIPS, 2021.

Thank You

Yihan Du

Postdoc UIUC duyihan1996@gmail.com