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Surrogate model



Why is High-Dimensional BO challenging?



“Vanilla Bayesian Optimization Performs Great in High Dimensions”1

“Standard Gaussian Process Can Be Excellent for High-Dimensional Bayesian 
Optimization”2

1 Hvarfner, C., Hellsten, E. O., & Nardi, L. (2024, July). Vanilla Bayesian Optimization Performs Great in High Dimensions. In International Conference 
on Machine Learning (pp. 20793-20817). PMLR.
2 Xu, Z., Wang, H., Phillips, J. M., & Zhe, S. (2024). Standard Gaussian Process Can Be Excellent for High-Dimensional Bayesian Optimization. arXiv 
preprint arXiv:2402.02746.



MLL Gradients



Acquisition Function Maximization Without Local Samples



Left: Average distances between the initial and the final candidates of LogEI with 
RAASP sampling. The vanishing gradient issue decreases. Right: Fraction of 
multi-start GD candidates originating from the RAASP samples when evaluating LogEI 
on random samples

Acquisition Function Maximization With Local Samples



MLE vs MAP

MLE MAP

non-vanishing gradients? ✅ (if initialized properly) ✅ 

unbiased? ✅ ❌

MSR = “MLE - scaled with RAASP”



Performance plots



Thank you!
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