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Small, capable models offer substantial benefits
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Lower thermal output Lower latency Lower carbon footprint

Enables more device deployment Enables real-time interactions Enables everything

Inference cost = FLOPs per token « N

Model size (parameters) —T

How can we make small and capable models?



Training small models directly on data is inefficient

How do we maximize data efficiency for small models?

Distillation!



Distillation transfers knowledge from a teacher to a student
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Our scaling law enables predictable distillation
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Only teacher cross-entropy influences student performance
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Our distillation scaling law enables compute optimal-distillation

Compute-Optimal Distillation

The student (size + tokens), and teacher (size + tokens)
producing the best student subject to a compute budget

We produced recipes that are 3x more data and compute
efficient that optimal supervised learning on data



Distillation is more efficient when discounting teacher training
This efficiency gap disappears at large compute and token budgets
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Distillation more
efficient

—— Distillation (best case)

— Diastillation (teacher inference)

— Distillation (teacher pretraining + inference)

— Diustillation (teacher pretraining)

— Supervised Supervised

learning equally
efficient




Summary of Distillation Scaling Laws

1. We developed a distillation scaling law to
predict student model performance

2. Using this law, we discovered training recipes
that are up to 3x more efficient than optimal
supervised learning

3. We also ran the largest distillation study to
date, uncovering key guidelines to maximize
student performance
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