

Distillation Scaling Laws

Dan Busbridge, Amitis Shidani, Floris Weers, Jason Ramapuram, Etai Littwin, Russ Webb

Small, capable models offer substantial benefits

Lower thermal output

Enables more device deployment

Lower latency

Enables real-time interactions

Lower carbon footprint

Enables everything

Inference cost \equiv FLOPs per token $\propto N$

Model size (parameters)

How can we make small and capable models?

Training small models directly on data is inefficient

How do we maximize data efficiency for small models?

Distillation!

Distillation transfers knowledge from a teacher to a student

Our scaling law enables predictable distillation

Only teacher cross-entropy influences student performance

Distillation Scaling Law

$$L_S pprox L_T + f(L_T) \times L(N_S, D_S)$$
 Approx. Power Error Law

Our distillation scaling law enables compute optimal-distillation

Compute-Optimal Distillation

The student (size + tokens), and teacher (size + tokens) producing the best student subject to a compute budget

We produced recipes that are 3x more data and compute efficient that optimal supervised learning on data

Distillation is more efficient when discounting teacher training

This efficiency gap disappears at large compute and token budgets

- Distillation (best case)
- Distillation (teacher inference)
- Distillation (teacher pretraining + inference)
- Distillation (teacher pretraining)
- Supervised

Summary of Distillation Scaling Laws

- 1. We developed a distillation scaling law to predict student model performance
- 2. Using this law, we discovered training recipes that are up to 3x more efficient than optimal supervised learning
- 3. We also ran the largest distillation study to date, uncovering key guidelines to maximize student performance

