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Motivation

Precision medicine: Tailors treatment to patient characteristics to
account for treatment effect heterogeneity and improve patient
outcomes.

Goal: Learn individualized treatment rules (ITRs, or policy) from
observational data.

Challenges:

• Many treatment arms, but limited sample per arm.
• Covariate imbalance across treatment groups.

Limitations of existing methods:

• Multi-armed policy learning fails with many treatments (Zhou,
Athey, and Wager, 2023).

• Linear fusion without covariate balancing is sensitive to
misspecification (Ma, Zeng, and Liu, 2022).
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Solution: Two-Stage Framework

Calibration Weighting

Real-world Data with Imbalanced X across Many Treatments 

Weighted Fused Lasso

Balanced X across Treatments

Multi-armed Policy Learning

Fused Treatment with Doubly Robust Guarantee

 Interpretable and Reliable ITR

Stage 1

Stage 2

Double robustness

Fused ITR is valid if either the outcome or weighting model is correct.
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Problem Setup

Potential outcome: Y(a), where a ∈ A ≡ {1, . . . , K}.

Data: p-dimensional covariates Xi ∈ X , treatment Ai, outcome Yi.

Goal: Learn an ITR d : X → A that maximizes the value E[Y(d(X))].

Assumptions:

• Consistency: Y = Y(A).
• Unconfoundedness: (Y(1), . . . , Y(K)) ⊥⊥ A | X.
• Positivity: P(A = a | X = x) > πmin > 0.

Propensity score: πa(x) ≡ P(A = a | X = x).

Conditional outcome mean: µa(x) ≡ E[Y(a) | X = x].
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Oracle Group Structure

Among K treatments, there are M latent groups G∗
1 , . . . ,G∗

M:

• Within-group: µa(x) = µa′(x) for a,a′ ∈ G∗
b .

• Between-group: µa(x) ̸= µa′(x) for a ∈ G∗
b ,a′ ∈ G∗

b′ ,b ̸= b′.

Exact equality ensures identifiability and theoretical guarantees.

Fused Lasso allows approximate grouping in practice.
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Stage 1: Calibration-Weighted Treatment Fusion

Step 1: Calibration Weighting

For each treatment a ∈ A, solve for weights {ŵi : Ai = a}:

min
wi:Ai=a

∑
i:Ai=a

hγ (wi) , (minimize deviation from uniform weights)

s.t.
∑
i:Ai=a

wiXi = X̄, (covariate balance)
∑
i:Ai=a

wi = 1. (normalization)

where hγ(w) = (naw)γ+1−1
γ(γ+1) is from the Cressie–Read family.

Special cases:

• γ = 0 gives entropy balancing (
∑
wi logwi).

• γ = −1 gives empirical likelihood (
∑

logwi).
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Stage 1: Calibration-Weighted Treatment Fusion

Step 2: Weighted Fused Lasso

Fit a weighted working model with pairwise fusion:

ζ̂ = min
ζ

{
1
n
∑
a∈A

∑
i:Ai=a

ŵiL
(
Yi −M0(Xi), X⊤i ζa

)
+

∑
1⩽a<a′⩽K

pλn (∥ζa − ζa′∥1)

}
.

• L is a loss function (e.g., squared error for continuous
outcomes).

• M0(X) is a nuisance main effect estimated separately.
• pλn is a fusion penalty.
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Stage 1: Calibration-Weighted Treatment Fusion

Consistency of oracle estimator ζ̂
or
: Under regularity and double

robustness, with known latent group structure,

∥ζ̂
or
− ζ∗∥∞ ≤ C

√
pn log(n)/Nmin,

where Nmin = minb∈B
∑n

i=1 I{Ai ∈ G∗
b} is the smallest group size.

Oracle property of ζ̂: If the between-group signal is strong and the
penalty is properly tuned,

P(ζ̂ = ζ̂
or
) → 1.

Implication: Under a completeness condition, equal ζ̂a’s recover the
oracle groups {G∗

b}.
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Stage 2: Multi-Armed Policy Learning

Step 1: Estimate µb(x) and πb(x) for fused group b.

Step 2: Evaluate each policy dB(x) with cross-fitted AIPW:

V̂(dB) = 1
n

n∑
i=1

{
I{Bi = dB(Xi)}

Yi − µ̂
−l(i)
Bi (Xi)

π̂
−l(i)
Bi (Xi)

+ µ̂
−l(i)
dB(Xi)

(Xi)
}
.

Step 3: Optimize dB over policy class DB (e.g., depth-D trees).
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Stage 2: Multi-Armed Policy Learning

General regret bound: Under regularity conditions and rate doubly
robust model assumption (i.e., at least one nuisance model is
consistent and their product error is o(n−1)),

R(d̂B) = OP

(
κ(DB)

√
V∗/n

)
,

where κ(DB) quantifies policy class complexity and V∗ is the
worst-case variance.

Policy tree regret bound: For depth-D policy trees,

R(d̂B) = OP

({√
(2D−1) log p+ 2D logM+ 4

3D
1/4

√
2D−1

}√
V∗/n

)
.
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Simulation Setup

Data

• K = 16 treatments, M = 4 latent groups
• Covariate shift and sample size imbalance

Competing Methods

• Policy tree without fusion
• Fusion + policy tree without calibration weighting (CW)
• Ma, Zeng, and Liu (2022): linear fusion + ITR without weighting

Metrics

• ARI: measures fusion quality (1 = perfect)
• Number of groups: oracle = 4
• Value: E[Y(d(X))] (higher is better)
• Monte Carlo standard errors in parentheses (200 runs)
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Simulation Results: Misspecified Outcome Model

Nonlinear µa(X); all X used for weighting

Method ARI ↑ # Groups Value ↑

Policy tree (baseline) – 16.000 8.77 (0.08)
Fusion + policy tree 0.26 (0.14) 10.73 (1.93) 8.78 (0.09)
CW + fusion + policy tree (proposed) 0.96 (0.06) 4.34 (0.60) 8.89 (0.11)
Ma, Zeng, and Liu (2022) 0.26 (0.14) 10.73 (1.93) 8.51 (0.12)
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Simulation Results: Misspecified Weighting Model

Linear µa(X); partial X used for weighting

Method ARI ↑ # Groups Value ↑

Policy tree (baseline) – 16.00 6.35 (0.06)
Fusion + policy tree 0.88 (0.13) 5.42 (1.42) 6.41 (0.04)
CW + fusion + policy tree (proposed) 0.96 (0.06) 4.46 (0.66) 6.43 (0.02)
Ma, Zeng, and Liu (2022) 0.88 (0.13) 5.42 (1.42) 6.39 (0.00)
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Real Data Application: CLL/SLL Patients

• Chronic Lymphocytic Leukemia (CLL) and Small Lymphocytic
Lymphoma (SLL) are slow-progressing blood cancers with
complex treatment options.

• Outcome: overall survival (binary).
• Covariates (10): race, region, PayerBin, SES Index, gender, ECOG
score, Rai stage, lymphadenopathy, age at LOT start, time from
diagnosis to LOT.

• ITR learning: excluded race, region, SES proxies (PayerBin, SES
Index) for fairness.
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Real Data Application: CLL/SLL Patients

Treatment Number of Patients

cBTKi mono 3392
AntiCD20 + Chemotherapy Only 1726
AntiCD20 mono 1230
BCL2i + AntiCD20 Only 463
cBTKi + AntiCD20 Only 408
Chemotherapy Only 215
Other 412

Total 10346
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Real Data Application: CLL/SLL Patients

Group 1 Group 2 Group 3 Group 4 Group 5

cBTKi mono AntiCD20 mono AntiCD20 +
Chemotherapy Only Other BCL2i + AntiCD20

Only
cBKTi + AntiCD20

Only Chemotherapy Only

NoYes

Yes No

Yes No

Group 3 Group 5 Group 3 Group 4

Yes No Yes No

Yes No

Group 4 Group 5 Group 4 Group 5

Yes No Yes No

Yes No

Yes No

Group 5 Group 3 Group 5 Group 2

Yes No Yes No

Yes No

Group 5 Group 3 Group 5 Group 2

Yes No Yes No

time<=1.87

time<=1.08

age<=84 lymphadenopathy
_false=0

time<=0.3 time<=0.59 age<=72 age<=82

time<=36.99

raistage_0=0 ECOG_0-1=0

time<=35.58 time<=15.31 time<=67.71 time<=171.86

• Group 1 includes two monotherapies with similar mechanisms
and intensity.

• Combination therapies and chemotherapy-only form distinct
treatment groups.

• Older or recently diagnosed patients tend to be assigned to
chemotherapy-only.

• Younger or long-diagnosed patients are guided to combination
therapies.

15



Takeaway Messages

Challenge: Learn interpretable and reliable ITRs from observational
data with many treatments, limited samples per arm, and covariate
imbalance.

Solution: A novel two-stage framework that integrates calibration
weighting, fused lasso, and interpretable policy learning.

Guarantees: Doubly robust theory for both stages, ensuring oracle
recovery and providing regret bounds, supported by strong empirical
results in simulations and real-world data.
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Thank you!
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