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Problem formulation
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Relationships between nodes in a directed graph is more complex than that in undirected graphs.
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The strength of the relationship between V; and V) Lk is stronger than that between Uy and U j-



Markov chain theory defines the expected length of the round-trip path
between nodes using commute time, therefore, the goal of this study is
to ensure that the relationships between node vector representations of

GNNs can reflect the commute times between nodes.

Theorem 3.2. (Li & Zhang,2012) Given Assumption[3.1, the fundamental matrix Z defined in
Eq. @) converges to:
Z=(1-P+JII)" ' - JII, 3)

where 1 is an identity matrix.

The hitting time and commute time on G can then be expressed as Z (Aldous & Fill,[2002) as follows:

Zi: — 2
h(vi,vj) = JJ 2 c(vi,vj) = h(vi,vj) + h(vj,v;). (4)

nj

[1]1LiY, Zhang Z-L. Digraph laplacian and the degree of asymmetry[J]. Internet Mathematics, 2012.




Markov chain theory defines the expected length of the round-trip path
between nodes using commute time, therefore, the goal of this study is
to ensure that the relationships between node vector representations of

GNNs can reflect the commute times between nodes.

Theorem 3.2. (Li & Zhang,2012) Given Assumption[3.1, the fundamental matrix Z defined in
Eq. @) converges to:
q 8 Z—(1-P+ JH)— Perron vector may not uniqugs)

. . . : and meaningful
where 1 is an identity matrix.
nversion operation of a dense matrix

The hitting time and commute time on G can then be expressed as Z (Aldous & Fill,[2002) as follows:

Zi: — 2
h(vi,vj) = JJ 2 c(vi,vj) = h(vi,vj) + h(vj,v;). (4)

nj

[1]1LiY, Zhang Z-L. Digraph laplacian and the degree of asymmetry[J]. Internet Mathematics, 2012.




Problem 1: Perron vector may not unique and non-zero.
Solution: Similarity-based graph rewiring.
Theorem 1: If a graph is irreducible, then its Perron

vector is non-zero. If a graph is aperiodic, then its
Perron vector is unique.

Sufficient Conditions

Proposition 1: A strongly connected digraph, in which a
directed path exists between every pair of vertices, Is
irreducible. A digraph with self-loops in each node is
aperiodic.
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Problem 1: Perron vector may not unique and non-zero.
Solution: Similarity-based graph rewiring.
Theorem 1: If a graph is irreducible, then its Perron

vector is non-zero. If a graph is aperiodic, then its
Perron vector is unique.

Sufficient Conditions

Proposition 1: A strongly connected digraph, in which a
directed path exists between every pair of vertices, Is
irreducible. A digraph with self-loops in each node is
aperiodic.

S = {’U5,U2,U5,U3,U7,U1,U4}
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Problem 2: Inversion operation of a dense matrix.

Solution: Efficient commute time computation with
Directed graph Laplacian.

We first define the Laplacian matrix on graph
as divergence of the gradient:

Ts = gDS, T = Bdlag ({PU}(U% ’Uj)EE) BT

Lemma 4.2. Given a rewired graph
the Weighted DlLap is defined as T

l_[Bdlcw ({P }( | )ﬁT Then the fundamental
vi,v)EE

[}

matrix Z. of G can be solved by:

Z=T7'T="T"

where the superscript T medns Moore—Penrose pseudoin-
verse of the matrix.

Sparse matrix



Theorem 4.3. Given G, the hitting time and commute time CGNN Message passing
from v; to v; on G can be computed as follows:
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Algorithm 1 CGNN

Input: Digraph G = (V, E, X); Depth L; Hidden size d'; Number of classes K
Output: Logits Y e RV <K

Compute the anchor a and node-anchor similarities to construct G' with Eq. (7).
Add all edges from G’ to G to generate G.
Compute the Weight DiLap T for ¢ with Eq. (6).
Compute R and its Moore-Penrose pseudoinverse with Eq. (8) and Eq. (27).
Compute the commute time matrix C with Eq. (10). N
Compute the normalized proximity matrix C with C°* = A ®CandC"* = AT & C.
for/e{1,--- L} do

Layer-wise message passing with Eq. (11).
end for
H = MLP(H%)).
. Y = Softmax(H).

ol A A Sl -

[ —
_— 0




Experiments

Method Squirrel  Chameleon  Citeseer  CoraML  AM-Photo Snap-Patents Roman-Empire Arxiv-Year
GCN 52.43 4201 67.96+122 66.03+188 7092403  B8.52+047 51.02 +0.106 73.69+074 46.02+026
GAT 40.72+155 60.69+195s  65.58+130 72221051  88.36+125 OOM 49184135 45.30+023
GraphSAGE 41.61107s  62.01+106  66.8l+138 74.16+155  89.71+0s7 67.45+0.53 86.37 +os0 55.43+07s
APPNP 51914056  45.37+162  66.90+152 70314067 87.43+09: 51.23+054 72.96+038 50.31+042
MixHop 43804148  60.50+253  56.09+208 65.89+150 87.17+134 41.22+0.19 50.76+0.14 45.30+026
GPRGNN 50.56+1.51 66.31+205 61.74+1187 T331+137  90.23+034 40.19+0.03 64.854027 45.07 +0.21
GCNII 38474158 63.86+34  58.324103  64.84+0m  8B3.40+0m 48.09 +0.00 74.27 +0a3 57.36+0.17
DGCN 37164172 50.77+3:  66.37+195  75.02+0s0 87. 74410 OOM 51.924+043 OOM

DiGCN 3344420 5037+4m 649941712 77.03+07 BE.60+051 OOM 52.71 4032 48.37+0.19
MagNet 39014103 58224287 65.044047 76321010  86.80+o06s OOM 88.07 +0.27 60.29+0.27
DUPLEX 57.604008  61.25+004  67.60+07m2 722610  B7.80+0s 66.54 +0.11 79.02 +008 64.37+027
DiGCL 35824113 56.45+27m 67424014 77534004 89.41+0.11 70.65+007 87.94+0.10 63.10+006
DirGNN 75.194126 79.11+22 66.57+0712  7533+032  B8.09+04s 73.95 4005 91.23+032 64.08+026
CGNN 77834152 79.62+233 T71.594006  77.08+0s¢ 90.42+0.10 72.89 4024 92.87 +04s 66.16-+0.32

* CGNN achieves new state-of-the-art results on 6 out of 8 datasets.

« Commute times effectively filters out irrelevant information by appropriately weighting
neighbors.

* CGNN gets the best trade-off between effectiveness and efficiency.
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