Commute Graph Neural Networks Wei Zhuo^{1,2}, Han Yu², Guang Tan¹, Xiaoxiao Li^{3,4} ¹Shenzhen Campus of Sun Yat-sen University ²Nanyang Technological University ³University of British Columbia, ⁴Vector Institute ## **Problem formulation** Directed Graph (Digraph): Relationships between nodes in a directed graph is more complex than that in undirected graphs. asymmetric relationships symmetric relationships $$Commute(v_i, v_j) \neq Commute(v_i, v_k)$$ Relationships between nodes in a directed graph is more complex than that in undirected graphs. Commute closed-loop between loop between v_i and v_j asymmetric relationships symmetric relationships $$Commute(v_i, v_j) > Commute(v_i, v_k)$$ Relationships between nodes in a directed graph is more complex than that in undirected graphs. asymmetric relationships symmetric relationships The strength of the relationship between v_i and v_k is stronger than that between v_i and v_i . Markov chain theory defines the expected length of the round-trip path between nodes using **commute time**, therefore, the goal of this study is to ensure that the relationships between node vector representations of GNNs can reflect the commute times between nodes. **Theorem 3.2.** (*Li & Zhang*, 2012) Given Assumption \mathfrak{Z} , the fundamental matrix \mathbf{Z} defined in Eq. (2) converges to: $$\mathbf{Z} = (\mathbf{I} - \mathbf{P} + \mathbf{J}\mathbf{\Pi})^{-1} - \mathbf{J}\mathbf{\Pi},\tag{3}$$ where **I** is an identity matrix. The hitting time and commute time on G can then be expressed as \mathbb{Z} (Aldous & Fill, 2002) as follows: $$h(v_i, v_j) = \frac{\mathbf{Z}_{jj} - \mathbf{Z}_{ij}}{\pi_j}, \quad c(v_i, v_j) = h(v_i, v_j) + h(v_j, v_i).$$ (4) Markov chain theory defines the expected length of the round-trip path between nodes using **commute time**, therefore, the goal of this study is to ensure that the relationships between node vector representations of GNNs can reflect the commute times between nodes. **Theorem 3.2.** (*Li & Zhang*, 2012) Given Assumption 3.1, the fundamental matrix **Z** defined in Eq. (1) converges to: where I is an identity matrix. ${f Z}=({f I}-{f P}+{f J}\Pi)$ Perron vector may not unique3) and meaningful nversion operation of a dense matrix The hitting time and commute time on G can then be expressed as \mathbb{Z} (Aldous & Fill, 2002) as follows: $$h(v_i, v_j) = \frac{\mathbf{Z}_{jj} - \mathbf{Z}_{ij}}{\pi_j}, \quad c(v_i, v_j) = h(v_i, v_j) + h(v_j, v_i).$$ (4) **Problem 1:** Perron vector may not unique and non-zero. **Solution**: Similarity-based graph rewiring. Theorem 1: If a graph is irreducible, then its Perron vector is non-zero. If a graph is aperiodic, then its Perron vector is unique. Proposition 1: A strongly connected digraph, in which a directed path exists between every pair of vertices, is irreducible. A digraph with self-loops in each node is aperiodic. **Problem 1:** Perron vector may not unique and non-zero. **Solution**: Similarity-based graph rewiring. Theorem 1: If a graph is irreducible, then its Perron vector is non-zero. If a graph is aperiodic, then its Perron vector is unique. Proposition 1: A strongly connected digraph, in which a directed path exists between every pair of vertices, is irreducible. A digraph with self-loops in each node is aperiodic. **Problem 2:** Inversion operation of a dense matrix. **Solution**: Efficient commute time computation with Directed graph Laplacian. We first define the Laplacian matrix on graph as divergence of the gradient: $$\mathbf{T}s = \mathcal{GD}s, \quad \mathbf{T} = \mathbf{B}\operatorname{diag}\left(\left\{\mathbf{P}_{ij}\right\}_{(v_i,v_j)\in E}^{M}\right)\mathbf{B}^{\top}$$ **Lemma 4.2.** Given a rewired graph \widetilde{G} , the Weighted Dilap is defined as $\widetilde{T} = \widetilde{\Pi}\widetilde{\mathbf{B}}\mathrm{diag}\left(\left\{\widetilde{\mathbf{P}}_{ij}\right\}_{(v_i,v_j)\in E}^{M}\right)\widetilde{\mathbf{B}}^{\top}$. Then the fundamental matrix \mathbf{Z} of \widetilde{G} can be solved by: $$\mathbf{Z} = \widetilde{\mathcal{T}}^{\dagger} \widetilde{\boldsymbol{\Pi}} = \widetilde{\mathbf{T}}^{\dagger},$$ where the superscript † means Moore–Penrose pseudoinverse of the matrix. ### **Sparse matrix** **Theorem 4.3.** Given \widetilde{G} , the hitting time and commute time from v_i to v_j on G can be computed as follows: **Theorem 4.3.** Given $$G$$, the hitting time and commute time from v_i to v_j on \widetilde{G} can be computed as follows: $$h(v_i, v_j) = \frac{\widetilde{\mathbf{T}}_{jj}^{\dagger}}{\pi_j} - \frac{\widetilde{\mathbf{T}}_{ij}^{\dagger}}{\sqrt{\pi_i \pi_j}},$$ $$c(v_i, v_j) = \frac{\widetilde{\mathbf{T}}_{jj}^{\dagger}}{\pi_j} + \frac{\widetilde{\mathbf{T}}_{ii}^{\dagger}}{\pi_i} - \frac{\widetilde{\mathbf{T}}_{ij}^{\dagger}}{\sqrt{\pi_i \pi_j}} - \frac{\widetilde{\mathbf{T}}_{ji}^{\dagger}}{\sqrt{\pi_i \pi_j}}.$$ ### **CGNN Message passing** #### Algorithm 1 CGNN **Input:** Digraph $G = (V, E, \mathbf{X})$; Depth L; Hidden size d'; Number of classes K **Output:** Logits $\hat{Y} \in \mathbb{R}^{N \times K}$ - 1: Compute the anchor a and node-anchor similarities to construct G' with Eq. (7). - 2: Add all edges from G' to G to generate G. - 3: Compute the Weight Dilap \mathcal{T} for G with Eq. (6). - 4: Compute \mathcal{R} and its Moore-Penrose pseudoinverse with Eq. (8) and Eq. (27). - 5: Compute the commute time matrix C with Eq. (10). - 6: Compute the normalized proximity matrix $\widetilde{\mathcal{C}}$ with $\widetilde{\mathcal{C}}^{out} = \mathbf{A} \odot \widetilde{\mathcal{C}}$ and $\widetilde{\mathcal{C}}^{in} = \mathbf{A}^{\top} \odot \widetilde{\mathcal{C}}$. - 7: **for** $\ell \in \{1, \dots, L\}$ **do** - Layer-wise message passing with Eq. (11). - 9: **end for** - 10: $\mathbf{H} = \mathrm{MLP}(\mathbf{H}^{(L)})$. - 11: $\hat{Y} = \text{Softmax}(\mathbf{H})$. # **Experiments** | Method | Squirrel | Chameleon | Citeseer | CoraML | AM-Photo | Snap-Patents | Roman-Empire | Arxiv-Year | |-----------|--|--|------------------|------------------------------|------------------------------|------------------------------|--|------------------------------| | GCN | 52.43±2.01 | 67.96±1.82 | 66.03±1.88 | 70.92±0.39 | 88.52±0.47 | 51.02±0.06 | 73.69±0.74 | 46.02±0.26 | | GAT | 40.72 ± 1.55 | 60.69 ± 1.95 | 65.58 ± 1.39 | 72.22 ± 0.57 | 88.36 ± 1.25 | OOM | 49.18±1.35 | 45.30 ± 0.23 | | GraphSAGE | 41.61 ± 0.74 | $62.01_{\pm 1.06}$ | 66.81 ± 1.38 | 74.16±1.55 | $89.71_{\pm 0.57}$ | 67.45 ± 0.53 | 86.37 ± 0.80 | 55.43 ± 0.75 | | APPNP | 51.91±0.56 | 45.37±1.62 | 66.90±1.82 | 70.31±0.67 | 87.43±0.98 | 51.23±0.54 | 72.96±0.38 | 50.31±0.42 | | MixHop | $43.80_{\pm 1.48}$ | 60.50 ± 2.53 | 56.09 ± 2.08 | 65.89 ± 1.50 | $87.17_{\pm 1.34}$ | 41.22 ± 0.19 | 50.76 ± 0.14 | 45.30 ± 0.26 | | GPRGNN | 50.56 ± 1.51 | 66.31±2.05 | 61.74 ± 1.87 | 73.31 ± 1.37 | 90.23 ± 0.34 | 40.19 ± 0.03 | 64.85 ± 0.27 | 45.07 ± 0.21 | | GCNII | $38.47_{\pm 1.58}$ | 63.86 ± 3.04 | 58.32 ± 1.93 | 64.84 ± 0.71 | 83.40±0.79 | $48.09_{\pm 0.09}$ | 74.27 ± 0.13 | 57.36 ± 0.17 | | DGCN | 37.16±1.72 | 50.77±3.31 | 66.37±1.93 | 75.02±0.50 | 87.74±1.02 | OOM | 51.92±0.43 | OOM | | DiGCN | 33.44 ± 2.07 | 50.37±4.31 | 64.99 ± 1.72 | 77.03 ± 0.70 | 88.66 ± 0.51 | OOM | 52.71 ± 0.32 | 48.37 ± 0.19 | | MagNet | $39.01_{\pm 1.93}$ | 58.22±2.87 | 65.04 ± 0.47 | 76.32 ± 0.10 | 86.80 ± 0.65 | OOM | 88.07 ± 0.27 | 60.29 ± 0.27 | | DUPLEX | 57.60 ± 0.98 | 61.25 ± 0.94 | 67.60 ± 0.72 | 72.26 ± 0.71 | 87.80 ± 0.82 | 66.54 ± 0.11 | 79.02 ± 0.08 | 64.37 ± 0.27 | | DiGCL | 35.82 ± 1.73 | 56.45±2.77 | 67.42 ± 0.14 | 77.53 ± 0.14 | 89.41 ± 0.11 | 70.65 ± 0.07 | 87.94 ± 0.10 | 63.10±0.06 | | DirGNN | $\underline{75.19{\scriptstyle\pm1.26}}$ | $\underline{79.11{\scriptstyle\pm2.28}}$ | 66.57 ± 0.74 | $75.33{\scriptstyle\pm0.32}$ | $88.09{\scriptstyle\pm0.46}$ | $73.95{\scriptstyle\pm0.05}$ | $\underline{91.23{\scriptstyle\pm0.32}}$ | $64.08{\scriptstyle\pm0.26}$ | | CGNN | 77.83±1.52 | 79.62±2.33 | 71.59±0.16 | 77.08±0.54 | 90.42±0.10 | 72.89±0.24 | 92.87±0.45 | 66.16±0.32 | - CGNN achieves new state-of-the-art results on 6 out of 8 datasets. - Commute times effectively filters out irrelevant information by appropriately weighting neighbors. - CGNN gets the best trade-off between effectiveness and efficiency. (a) Heterophilic graph. (b) Homophilic graph.