

Commute Graph Neural Networks

Wei Zhuo^{1,2}, Han Yu², Guang Tan¹, Xiaoxiao Li^{3,4}

¹Shenzhen Campus of Sun Yat-sen University ²Nanyang Technological University ³University of British Columbia, ⁴Vector Institute

Problem formulation

Directed Graph (Digraph):

Relationships between nodes in a directed graph is more complex than that in undirected graphs.

asymmetric relationships

symmetric relationships

$$Commute(v_i, v_j) \neq Commute(v_i, v_k)$$

Relationships between nodes in a directed graph is more complex than that in undirected graphs.

Commute closed-loop between loop between v_i and v_j

asymmetric relationships

symmetric relationships

$$Commute(v_i, v_j) > Commute(v_i, v_k)$$

Relationships between nodes in a directed graph is more complex than that in undirected graphs.

asymmetric relationships

symmetric relationships

The strength of the relationship between v_i and v_k is stronger than that between v_i and v_i .

Markov chain theory defines the expected length of the round-trip path between nodes using **commute time**, therefore, the goal of this study is to ensure that the relationships between node vector representations of GNNs can reflect the commute times between nodes.

Theorem 3.2. (*Li & Zhang*, 2012) Given Assumption \mathfrak{Z} , the fundamental matrix \mathbf{Z} defined in Eq. (2) converges to:

$$\mathbf{Z} = (\mathbf{I} - \mathbf{P} + \mathbf{J}\mathbf{\Pi})^{-1} - \mathbf{J}\mathbf{\Pi},\tag{3}$$

where **I** is an identity matrix.

The hitting time and commute time on G can then be expressed as \mathbb{Z} (Aldous & Fill, 2002) as follows:

$$h(v_i, v_j) = \frac{\mathbf{Z}_{jj} - \mathbf{Z}_{ij}}{\pi_j}, \quad c(v_i, v_j) = h(v_i, v_j) + h(v_j, v_i).$$
 (4)

Markov chain theory defines the expected length of the round-trip path between nodes using **commute time**, therefore, the goal of this study is to ensure that the relationships between node vector representations of GNNs can reflect the commute times between nodes.

Theorem 3.2. (*Li & Zhang*, 2012) Given Assumption 3.1, the fundamental matrix **Z** defined in Eq. (1) converges to:

where I is an identity matrix.

 ${f Z}=({f I}-{f P}+{f J}\Pi)$ Perron vector may not unique3) and meaningful nversion operation of a dense matrix

The hitting time and commute time on G can then be expressed as \mathbb{Z} (Aldous & Fill, 2002) as follows:

$$h(v_i, v_j) = \frac{\mathbf{Z}_{jj} - \mathbf{Z}_{ij}}{\pi_j}, \quad c(v_i, v_j) = h(v_i, v_j) + h(v_j, v_i).$$
 (4)

Problem 1: Perron vector may not unique and non-zero.

Solution: Similarity-based graph rewiring.

Theorem 1: If a graph is irreducible, then its Perron vector is non-zero. If a graph is aperiodic, then its Perron vector is unique.

Proposition 1: A strongly connected digraph, in which a directed path exists between every pair of vertices, is irreducible. A digraph with self-loops in each node is aperiodic.

Problem 1: Perron vector may not unique and non-zero.

Solution: Similarity-based graph rewiring.

Theorem 1: If a graph is irreducible, then its Perron vector is non-zero. If a graph is aperiodic, then its Perron vector is unique.

Proposition 1: A strongly connected digraph, in which a directed path exists between every pair of vertices, is irreducible. A digraph with self-loops in each node is aperiodic.

Problem 2: Inversion operation of a dense matrix.

Solution: Efficient commute time computation with Directed graph Laplacian.

We first define the Laplacian matrix on graph as divergence of the gradient:

$$\mathbf{T}s = \mathcal{GD}s, \quad \mathbf{T} = \mathbf{B}\operatorname{diag}\left(\left\{\mathbf{P}_{ij}\right\}_{(v_i,v_j)\in E}^{M}\right)\mathbf{B}^{\top}$$

Lemma 4.2. Given a rewired graph \widetilde{G} , the Weighted Dilap is defined as $\widetilde{T} = \widetilde{\Pi}\widetilde{\mathbf{B}}\mathrm{diag}\left(\left\{\widetilde{\mathbf{P}}_{ij}\right\}_{(v_i,v_j)\in E}^{M}\right)\widetilde{\mathbf{B}}^{\top}$. Then the fundamental matrix \mathbf{Z} of \widetilde{G} can be solved by:

$$\mathbf{Z} = \widetilde{\mathcal{T}}^{\dagger} \widetilde{\boldsymbol{\Pi}} = \widetilde{\mathbf{T}}^{\dagger},$$

where the superscript † means Moore–Penrose pseudoinverse of the matrix.

Sparse matrix

Theorem 4.3. Given \widetilde{G} , the hitting time and commute time from v_i to v_j on G can be computed as follows:

Theorem 4.3. Given
$$G$$
, the hitting time and commute time from v_i to v_j on \widetilde{G} can be computed as follows:

$$h(v_i, v_j) = \frac{\widetilde{\mathbf{T}}_{jj}^{\dagger}}{\pi_j} - \frac{\widetilde{\mathbf{T}}_{ij}^{\dagger}}{\sqrt{\pi_i \pi_j}},$$

$$c(v_i, v_j) = \frac{\widetilde{\mathbf{T}}_{jj}^{\dagger}}{\pi_j} + \frac{\widetilde{\mathbf{T}}_{ii}^{\dagger}}{\pi_i} - \frac{\widetilde{\mathbf{T}}_{ij}^{\dagger}}{\sqrt{\pi_i \pi_j}} - \frac{\widetilde{\mathbf{T}}_{ji}^{\dagger}}{\sqrt{\pi_i \pi_j}}.$$

CGNN Message passing

Algorithm 1 CGNN

Input: Digraph $G = (V, E, \mathbf{X})$; Depth L; Hidden size d'; Number of classes K **Output:** Logits $\hat{Y} \in \mathbb{R}^{N \times K}$

- 1: Compute the anchor a and node-anchor similarities to construct G' with Eq. (7).
- 2: Add all edges from G' to G to generate G.
- 3: Compute the Weight Dilap \mathcal{T} for G with Eq. (6).
- 4: Compute \mathcal{R} and its Moore-Penrose pseudoinverse with Eq. (8) and Eq. (27).
- 5: Compute the commute time matrix C with Eq. (10).
- 6: Compute the normalized proximity matrix $\widetilde{\mathcal{C}}$ with $\widetilde{\mathcal{C}}^{out} = \mathbf{A} \odot \widetilde{\mathcal{C}}$ and $\widetilde{\mathcal{C}}^{in} = \mathbf{A}^{\top} \odot \widetilde{\mathcal{C}}$.
- 7: **for** $\ell \in \{1, \dots, L\}$ **do**
- Layer-wise message passing with Eq. (11).
- 9: **end for**
- 10: $\mathbf{H} = \mathrm{MLP}(\mathbf{H}^{(L)})$.
- 11: $\hat{Y} = \text{Softmax}(\mathbf{H})$.

Experiments

Method	Squirrel	Chameleon	Citeseer	CoraML	AM-Photo	Snap-Patents	Roman-Empire	Arxiv-Year
GCN	52.43±2.01	67.96±1.82	66.03±1.88	70.92±0.39	88.52±0.47	51.02±0.06	73.69±0.74	46.02±0.26
GAT	40.72 ± 1.55	60.69 ± 1.95	65.58 ± 1.39	72.22 ± 0.57	88.36 ± 1.25	OOM	49.18±1.35	45.30 ± 0.23
GraphSAGE	41.61 ± 0.74	$62.01_{\pm 1.06}$	66.81 ± 1.38	74.16±1.55	$89.71_{\pm 0.57}$	67.45 ± 0.53	86.37 ± 0.80	55.43 ± 0.75
APPNP	51.91±0.56	45.37±1.62	66.90±1.82	70.31±0.67	87.43±0.98	51.23±0.54	72.96±0.38	50.31±0.42
MixHop	$43.80_{\pm 1.48}$	60.50 ± 2.53	56.09 ± 2.08	65.89 ± 1.50	$87.17_{\pm 1.34}$	41.22 ± 0.19	50.76 ± 0.14	45.30 ± 0.26
GPRGNN	50.56 ± 1.51	66.31±2.05	61.74 ± 1.87	73.31 ± 1.37	90.23 ± 0.34	40.19 ± 0.03	64.85 ± 0.27	45.07 ± 0.21
GCNII	$38.47_{\pm 1.58}$	63.86 ± 3.04	58.32 ± 1.93	64.84 ± 0.71	83.40±0.79	$48.09_{\pm 0.09}$	74.27 ± 0.13	57.36 ± 0.17
DGCN	37.16±1.72	50.77±3.31	66.37±1.93	75.02±0.50	87.74±1.02	OOM	51.92±0.43	OOM
DiGCN	33.44 ± 2.07	50.37±4.31	64.99 ± 1.72	77.03 ± 0.70	88.66 ± 0.51	OOM	52.71 ± 0.32	48.37 ± 0.19
MagNet	$39.01_{\pm 1.93}$	58.22±2.87	65.04 ± 0.47	76.32 ± 0.10	86.80 ± 0.65	OOM	88.07 ± 0.27	60.29 ± 0.27
DUPLEX	57.60 ± 0.98	61.25 ± 0.94	67.60 ± 0.72	72.26 ± 0.71	87.80 ± 0.82	66.54 ± 0.11	79.02 ± 0.08	64.37 ± 0.27
DiGCL	35.82 ± 1.73	56.45±2.77	67.42 ± 0.14	77.53 ± 0.14	89.41 ± 0.11	70.65 ± 0.07	87.94 ± 0.10	63.10±0.06
DirGNN	$\underline{75.19{\scriptstyle\pm1.26}}$	$\underline{79.11{\scriptstyle\pm2.28}}$	66.57 ± 0.74	$75.33{\scriptstyle\pm0.32}$	$88.09{\scriptstyle\pm0.46}$	$73.95{\scriptstyle\pm0.05}$	$\underline{91.23{\scriptstyle\pm0.32}}$	$64.08{\scriptstyle\pm0.26}$
CGNN	77.83±1.52	79.62±2.33	71.59±0.16	77.08±0.54	90.42±0.10	72.89±0.24	92.87±0.45	66.16±0.32

- CGNN achieves new state-of-the-art results on 6 out of 8 datasets.
- Commute times effectively filters out irrelevant information by appropriately weighting neighbors.
- CGNN gets the best trade-off between effectiveness and efficiency.

(a) Heterophilic graph.

(b) Homophilic graph.

