

KoopSTD: Reliable Similarity Analysis between Dynamical Systems via Approximating Koopman Spectrum with Timescale Decoupling

Shimin Zhang*, Ziyuan Ye*, Yinsong Yan, Zeyang Song, Yujie Wu, Jibin Wu[†]

Background

Neural representation similarity analysis: a family of computational and statistical methods designed to **quantify the similarity between representations of neural activity** across experimental conditions, time points, or between brain regions and computational models.

Why so important?

To machine learning, it reveals how internal representations of deep neural networks are influenced by:

Network Architectures

Training Methods

To neuroscience, It reveals how brain regions encode information, offering insights into their roles in perception, cognition, and functional specialization:

Related Work

Representation-based Similarity Metric:

Procrustes Analysis (general shape metric)

Dynamics-based Similarity Metric:

Temporal Response Function

Challenge:

- Static metrics overlook the temporal dynamics inherent in many real-world systems.
- Dynamic metrics fail to capture the nonlinear, and complex temporal patterns observed in biological and artificial systems.

Preliminary: Koopman Operator Theory

The Koopman operator theoretically **embeds nonlinear systems into infinite-dimensional Hilbert space**, which permits an **exact and globally linear description** of the dynamics.

Function space

Finite approximation: **Dynamic Mode Decomposition (DMD)**

$$\mathbf{X} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ \mathbf{x}(t_1) & \mathbf{x}(t_2) & \cdots & \mathbf{x}(t_m) \end{bmatrix} \quad \mathbf{X'} \approx \mathbf{AX}.$$

$$\mathbf{X'} = \begin{bmatrix} \begin{vmatrix} & & & \\ \mathbf{x}(t_1') & \mathbf{x}(t_2') & \cdots & \mathbf{x}(t_m') \end{bmatrix} \quad \mathbf{A} = \underset{\mathbf{A}}{\operatorname{argmin}} \|\mathbf{X'} - \mathbf{AX}\|_F = \mathbf{X'X}^{\dagger}$$
Temporal snapshots Ordinary Least Square (OLS)

How can it relate to the dynamic similarity?

Previous attempt: Fujii et al., 2017; Ishikawa et al., 2018; Ostrow et al., 2024

Nonlinear systems are hard to analyze directly in the time domain due to the **intricate interactions across multiple timescales**.

$\operatorname{dist}(\mathcal{F}_1,\mathcal{F}_2) riangleq \operatorname{dist}(A_1,A_2)$

Koopman Operator

Eigen-Time-Freq Coordinate

Koopman spectrum

Eigen Decomp.

 $<\lambda, v>$

Question: How can we guarantee the DMD (OLS) convergence?

OLS

Spectral pollution: Spectral discretization introduces spurious modes.

$$egin{aligned} \operatorname{dist}(\mathcal{F}_1,\mathcal{F}_2) & riangleq \operatorname{dist}(A_1,A_2) \ & = \operatorname{Wasserstein}(\hat{\Lambda}_1,\hat{\Lambda}_2) \end{aligned}$$

KoopSTD overview.

Algorithm 1 KoopSTD Pseudocode

```
Input: two time series, \mathbf{X}_1 \in \mathbb{R}^{T_1 \times N_{d_1}} and \mathbf{X}_2 \in
\mathbb{R}^{\bar{T}_2 \times N_{d_2}}; STFT window size, l \in \mathbb{Z}^+; STFT hop size,
s \in \mathbb{Z}^+; number of preserved modes, r \in \mathbb{Z}^+
Output: Dynamics dissimilarity d between X_1 and X_2
Procedure DMD<sub>STFT</sub>(\mathbf{X}, l, s)
    \mathbf{Z} = \text{STFT}(\mathbf{X}, l, s)
    Solve \mathbf{Z} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*
    Approximate A_{tf} by Eq. (6)
    Return A_{tf}
End Procedure
Procedure RESCONTROL(\mathbf{A}_{tf}, r)
    Solve \mathbf{A}_{tf}\Phi = \Phi\Lambda for eigenpairs \{\hat{\lambda}_i, \hat{v}_i\}_{i=1}^{N_f}
    for j=1 to N_f do
          Compute the residual of \{\hat{\lambda}_i, \hat{v}_i\} by Eq. (7)
    end for
    Top r accurate eigenvalues \Lambda = \operatorname{diag}(\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_r)
    Return A
End Procedure
\mathbf{A_{tf.1}} \leftarrow \mathrm{DMD}_{STFT}(\mathbf{X}_1, l, s)
\mathbf{A_{tf,2}} \leftarrow \mathrm{DMD}_{STFT}(\mathbf{X}_2, l, s)
\Lambda_1 \leftarrow \text{RESCONTROL}(\mathbf{A}_{tf,1}, r)
\Lambda_2 \leftarrow \text{RESCONTROL}(\mathbf{A}_{tf,2}, r)
Compute the dynamics dissimilarity d by Eq. (8)
```

Transformation-Invariant Property

Let $X_1[t+1] = \mathcal{F}_1(X_1[t])$ and $X_2[t+1] = \mathcal{F}_2(X_2[t])$ be two time-discrete dynamical systems with state variables $X_1, X_2 \in \mathbb{R}^{N_d}$, and they are governed by mappings $\mathcal{F}_1, \mathcal{F}_2 : \mathbb{R}^{N_d} \to \mathbb{R}^{N_d}$. Now we prove that the distance $d(\mathcal{F}_1, \mathcal{F}_2)$ between two systems calculated by KoopSTD remains invariant under invertible linear transformations \mathcal{T} , such that:

$$d(\mathcal{T}(\mathcal{F}_1, \mathcal{F}_2)) = d(\mathcal{F}_1, \mathcal{F}_2), \tag{16}$$

where $\mathcal{T} = \{\mathbf{X} \mapsto \mathbf{X}\mathbf{Q} : \mathbf{Q} \in GL(N_d, \mathbb{R})\}$. $GL(N_d, \mathbb{R})$ denotes the general linear group of all invertible matrices $\mathbf{Q} \in \mathbb{R}^{N_d \times N_d}$.

This theoretical groundedness **ensures robustness to common transformations in the representation space**, highlighting its potential for broad applicability in challenging scenarios.

Experiments

We construct **three synthetic datasets** derived from distinct physical and neural systems, each exhibiting different dynamic behaviors.

• **Dataset 1:** Trajectories of Lorenz63 system with different ρ .

Dataset 2: Noisy 2D attractors for Perceptual Decision Making.

• Dataset 3: Hidden states of RNNs for solving the Flip-Flop task.

To evaluate effectiveness, we use the **Silhouette Coefficient** to quantify how well the metric distinguishes data according to their underlying dynamics.

Metrics	Metrics Representational		Dynamical		
Systems	CKA	Procrustes	CC	HAVOK	KoopSTD
Lorenz Systems	-0.05	-0.04	-0.27	0.47	<u>0.94</u>
PDM Attractors	-0.04	-0.02	-0.30	0.90	<u>0.99</u>
Flip-Flop RNNs	0.20	0.98	-0.16	0.10	<u>-0.04</u>

Ablation Study

We conduct an ablation study on the Lorenz63 system to separately examine the impact of **time-frequency representation** and **spectral residual control**.

Discovery: Auditory Cortex Structural-Functional Relation

Nastase et al., 2021

By wet experiment

Glasser et al., 2016

- The result from KoopSTD mirrors conclusion of myelination-based cortical parcellation.
- The potential of KoopSTD as a powerful tool for neuroscience research.

Discovery: LLMs Scaling Law

- Larger language models demonstrate **greater coherence in the dynamics of their hidden states**, whereas smaller models exhibit more divergent and unstable behaviors.
- This compactness in the dynamical representation space offers a novel perspective on the emergent capabilities of large language models.

Conclusion

A novel similarity analysis framework **KoopSTD** for dynamical systems

Theoretical soundness of transformation-invariant property

Comprehensive experiments demonstrate clear advantages over existing metrics

Great potential in neuroscience research

A fresh lens on understanding the LLM scaling law