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Background

Neural representation similarity analysis: a family of computational and statistical methods designed to quantify the 

similarity between representations of neural activity across experimental conditions, time points, or between 

brain regions and computational models.

Why so important?

To machine learning, it reveals how internal representations of 

deep neural networks are influenced by:

Network Architectures

Training Methods Data Distributions

To neuroscience, It reveals how brain regions encode 

information, offering insights into their roles in perception, 

cognition, and functional specialization:



Related Work

• Representation-based Similarity Metric: • Dynamics-based Similarity Metric:

Representation 

Similarity Analysis

Procrustes Analysis (general shape metric)

Canonical 

Correlation Analysis

Cross Correlation

Temporal Response Function

Dynamic Time Warping

Challenge:

• Static metrics overlook the temporal dynamics inherent in many real-world systems.

• Dynamic metrics fail to capture the nonlinear, and complex temporal patterns observed in biological and 

artificial systems.



Preliminary: Koopman Operator Theory

The Koopman operator theoretically embeds nonlinear systems into infinite-dimensional Hilbert space, 

which permits an exact and globally linear description of the dynamics.

Finite approximation: Dynamic Mode Decomposition (DMD)

Ordinary Least Square (OLS)Temporal snapshots

How can it relate to the dynamic similarity?

Previous attempt: Fujii et al., 2017; Ishikawa et al., 2018; Ostrow et al., 2024



Method

Nonlinear systems are hard to analyze directly in the time domain due to the intricate interactions across 

multiple timescales.

Short-Time Fourier Transformation

(STFT)



Method

Question: How can we guarantee the DMD (OLS) convergence?

Spectral pollution: Spectral discretization introduces spurious 

modes.

OLS

The right singular vector extracts the dominant modes and 

captures multi-scale temporal dynamics.

Eigen Decomp.

Galerkin

Approximation

Spurious Modes Cleanup

Koopman spectrum



Method

Spurious Modes Cleanup

Eigenvalue Distribution



Method

KoopSTD overview.



Transformation-Invariant Property

Original Pattern Rotation Permutation Isotropic Scaling

This theoretical groundedness ensures robustness to common transformations in the representation space, 

highlighting its potential for broad applicability in challenging scenarios.



Experiments

We construct three synthetic datasets derived from distinct physical and neural systems, each exhibiting 

different dynamic behaviors.

To evaluate effectiveness, we use the Silhouette Coefficient 

to quantify how well the metric distinguishes data according 

to their underlying dynamics.

• Dataset 1: Trajectories of Lorenz63 system with different 𝜌.

• Dataset 2: Noisy 2D attractors for Perceptual Decision Making.

• Dataset 3: Hidden states of RNNs for solving the Flip-Flop task.



Ablation Study

We conduct an ablation study on the Lorenz63 system to separately examine the impact of time-frequency 

representation and spectral residual control.



Discovery: Auditory Cortex Structural-Functional Relation

Glasser et al., 2016

By wet experiment

• The result from KoopSTD mirrors conclusion of myelination-based cortical 

parcellation.

• The potential of KoopSTD as a powerful tool for neuroscience research.

By KoopSTD

Nastase et al., 2021

Narratives fMRI dataset



Discovery: LLMs Scaling Law

• Larger language models demonstrate greater coherence in the dynamics of their hidden states, whereas 

smaller models exhibit more divergent and unstable behaviors. 

• This compactness in the dynamical representation space offers a novel perspective on the emergent 

capabilities of large language models.

Kaplan et al., 2020

Instructions Language Model Hidden States



Conclusion

A novel similarity analysis framework KoopSTD for dynamical systems

Comprehensive experiments demonstrate clear advantages over existing metrics

Great potential in neuroscience research

A fresh lens on understanding the LLM scaling law

Theoretical soundness of transformation-invariant property


	Slide 1
	Slide 2: Background
	Slide 3: Related Work
	Slide 4: Preliminary: Koopman Operator Theory
	Slide 5: Method
	Slide 6: Method
	Slide 7: Method
	Slide 8: Method
	Slide 9: Transformation-Invariant Property
	Slide 10: Experiments
	Slide 11: Ablation Study
	Slide 12: Discovery: Auditory Cortex Structural-Functional Relation
	Slide 13: Discovery: LLMs Scaling Law
	Slide 14: Conclusion

