Does One-shot Give the Best Shot? Mitigating Model Inconsistency in One-shot Federated Learning ¹<u>Hui Zeng</u>, ²Wenke Huang, ¹Tongqing Zhou, ¹Xinyi Wu, ²Guancheng Wan, ¹Yingwen Chen, ¹Zhiping Cai ¹National University of Defense Technology, ²Wuhan University ### Background & Motivation Heavy communication overhead in vanilla Federated Learning - Heavy communication burden: More than 250GB for a VGG19 - High communication time: More than 194 hours for one round transmission of GPT-3 Existing One-shot Federated Learning: - Optimization-based methods - Distillation-based methods - Generative methods - Selective ensemble methods Bottleneck: significant performance gap Garbage in, garbage out ## Background & Motivation #### Model inconsistencies: #### ■ Intra-model inconsistency: **Intra-model inconsistency**. The intra-model inconsistency of the one-shot local model on the original samples (x, y) and augmented samples (A(x), y) can be represented as: $$\|\Delta_{intra}\|^2 \ge \|\left(p \cdot \nabla g_a \cdot \nabla A\right)^T (x - A(x))\|^2 > 0,$$ where $p = \sum_{c=1}^{C} (z_c - y_c)$, z is the prediction of w_i activated by softmax function with the augmented samples A(x), ∇g_a is the gradient of the local model w_i , and ∇A is the gradient of the data augmentation function. #### ■ Inter-model inconsistency: **Inter-model inconsistency**. For any two client u and v with the same quantity of samples $n_u = n_v$, the one-step model deviation between the two clients $\Delta_{inter} = \nabla w_u - \nabla w_v$ can be represented as: $$\|\Delta_{inter}\|^{2}$$ $$= \|\frac{\eta}{n_{u}} [(n_{u,c}(1 - \overline{z}_{u,c})\overline{x}_{u,c} - n_{v,c}(1 - \overline{z}_{v,c})\overline{x}_{v,c}) - (\sum_{c' \in [C_{u}] \setminus c} n_{u,c'}\overline{z}_{u,c'}\overline{x}_{u,c'} - \sum_{c' \in [C_{v}] \setminus c} n_{v,c'}\overline{z}_{v,c'}\overline{x}_{v,c'})]\|^{2}$$ $$> 0,$$ where η is the learning rate, $n_{u,c}$ and $n_{v,c}$ is the sample quantity of c-th class, c' is the negative classes except c. ### Challenges & Method **Challenges #1**: How can we construct a model capable of capturing invariant features and achieving stable predictions under such heterogeneous conditions? Contribution #1: we design Self-Alignment Local Training(SALT), which employs contrastive learning and prototypes to mitigate the intra-model inconsistency. **Challenges #2**: How can we effectively leverage models with parameter discrepancies in a one-shot manner? Contribution #2: we design Informative Feature Fused Inference(IFFI), which performs feature-level fusion to mitigate the inter-model inconsistency. ### **Experiment Results** #### ■ Effectiveness | Methods | CIFAR-10 | | | | CIFAR-100 | | | | Tiny-ImageNet | | | | |-------------|--------------------|------------------------|------------------------|--------------------|------------------------|--------------------|------------------------|------------------------|------------------------|--------------------|------------------------|--------------------| | | $\alpha = 0.05$ | $\alpha = 0.1$ | $\alpha = 0.3$ | $\alpha = 0.5$ | $\alpha = 0.05$ | $\alpha = 0.1$ | $\alpha = 0.3$ | $\alpha = 0.5$ | $\alpha = 0.05$ | $\alpha = 0.1$ | $\alpha = 0.3$ | $\alpha = 0.5$ | | MA-Echo | 36.77±0.91 | 51.23 ± 0.28 | 60.14 ± 0.21 | $64.21_{\pm0.23}$ | 19.54 ± 0.45 | $29.11_{\pm0.26}$ | 37.77 _{±0.24} | 41.94 ± 0.21 | 15.46±0.66 | 22.23±0.56 | 23.46±0.19 | $28.21_{\pm0.42}$ | | O-FedAvg | $12.13_{\pm 2.11}$ | $17.43_{\pm 0.51}$ | $28.07_{\pm0.89}$ | $35.42_{\pm0.67}$ | $4.77_{\pm0.21}$ | $6.45_{\pm 0.71}$ | $10.67_{\pm0.31}$ | $12.13_{\pm 0.05}$ | 5.67 _{±0.45} | $8.31_{\pm0.21}$ | $13.61_{\pm0.10}$ | $13.71_{\pm0.16}$ | | FedFisher | 40.03±1.11 | $47.01_{\pm 1.81}$ | 49.33 ± 1.52 | 50.34±1.32 | $16.56_{\pm 2.67}$ | $18.98_{\pm 2.09}$ | 27.24 ± 1.92 | 31.44±1.87 | 15.65±1.54 | 17.89 ± 1.46 | 19.54 ± 1.31 | $20.77_{\pm 1.15}$ | | FedDF | 35.53±0.67 | 41.58 ± 0.80 | 44.78 ± 0.60 | 54.58±0.73 | 15.07 ± 0.74 | $27.17_{\pm 0.55}$ | 31.23 ± 0.79 | 35.39 ± 0.47 | 11.45 ± 0.40 | 16.32 ± 0.33 | 17.79 ± 0.57 | 27.55 ± 0.66 | | F-ADI | 35.93±1.56 | $48.35_{\pm 1.23}$ | $52.66_{\pm 1.44}$ | $58.78_{\pm 1.67}$ | $14.65_{\pm 0.98}$ | $28.13_{\pm 1.24}$ | $33.18_{\pm0.67}$ | 39.44±1.11 | 13.92 _{±1.99} | $19.00_{\pm 1.78}$ | $26.01_{\pm 1.44}$ | 29.98 ± 1.34 | | F-DAFL | 38.32±1.40 | 46.34 ± 1.12 | 54.03 ± 1.71 | 59.09±2.23 | $16.31_{\pm0.33}$ | $26.80_{\pm 1.33}$ | $34.89_{\pm 1.45}$ | 37.88±1.34 | 15.12±1.34 | $19.01_{\pm 1.11}$ | 23.78 ± 1.23 | 27.98 ± 1.10 | | DENSE | 38.37±1.08 | 50.26 ± 0.24 | 59.76 ± 0.45 | 62.19 ± 0.12 | $18.37_{\pm 2.43}$ | $32.03_{\pm 0.44}$ | $37.33_{\pm0.48}$ | 38.84 ± 0.39 | 18.77±0.67 | 22.25 ± 0.33 | 28.14 ± 0.34 | 32.34 ± 0.32 | | Ensemble | 41.36 ± 0.67 | $45.43_{\pm0.32}$ | 62.18 ± 0.34 | $61.61_{\pm0.23}$ | $20.46_{\pm0.62}$ | $26.23_{\pm 0.55}$ | $38.01_{\pm 0.67}$ | $41.61_{\pm 0.77}$ | $13.28_{\pm0.67}$ | 15.38 ± 0.23 | $17.53_{\pm0.31}$ | $28.50_{\pm0.46}$ | | Co-Boosting | 39.20±0.81 | 58.49 ± 1.24 | $67.21_{\pm 1.76}$ | 70.24 ± 2.34 | $20.19_{\pm 1.44}$ | 27.59 ± 1.35 | $39.30_{\pm 1.30}$ | $42.67_{\pm 1.40}$ | 19.00±1.45 | $21.90_{\pm 1.20}$ | 29.24±1.32 | 30.78 ± 2.01 | | FuseFL | 54.42±0.41 | 73.79 ± 0.34 | 84.58 ± 0.91 | 84.34±0.88 | 29.12±0.23 | $36.86_{\pm0.38}$ | 45.12 ± 0.51 | 49.30 ± 0.32 | 22.15±2.11 | 29.28±2.04 | 33.04±1.79 | 34.34 ± 1.81 | | IntactOFL | 48.22±0.43 | 61.13±0.63 | 70.21±0.60 | 79.93±0.23 | 27.99 _{±0.67} | 39.15±0.46 | 41.86±0.60 | 46.78±0.78 | 20.45 ± 0.34 | 28.43±0.17 | 30.15±0.12 | $35.09_{\pm0.14}$ | | Ours | 71.84±1.53 | 77.83 _{±1.32} | 84.76 _{±0.46} | 88.74±0.11 | 31.02 ±1.17 | 45.48±1.01 | 56.65 _{±0.91} | 61.07 _{±0.55} | 36.96±0.92 | 43.62±0.77 | 53.32 _{±0.50} | 56.48±0.32 | | Δ | † 17.42 | ↑ 6.04 | ↑ 0.18 | †4.40 | † 1.90 | † 6.33 | † 11.53 | † 11.77 | ↑ 14.81 | ↑ 14.34 | ↑ 20.28 | ↑ 21.39 | ### Efficiency ### Scalability | Methods | Client scales m | | | | | | | | | | |-------------|-----------------|-------|-------|-------|-------|--|--|--|--|--| | Methods | 5 | 10 | 25 | 50 | 100 | | | | | | | MA-Echo | 64.21 | 52.64 | 48.36 | 45.35 | 38.54 | | | | | | | O-FedAvg | 35.42 | 32.09 | 28.03 | 28.24 | 27.14 | | | | | | | FedFisher | 50.34 | 45.67 | 34.66 | 29.09 | 28.89 | | | | | | | FedDF | 54.58 | 48.88 | 35.44 | 29.91 | 25.66 | | | | | | | F-ADI | 59.34 | 46.33 | 31.83 | 27.66 | 24.89 | | | | | | | F-DAFL | 58.59 | 45.45 | 32.88 | 29.98 | 28.91 | | | | | | | DENSE | 62.19 | 54.67 | 49.32 | 48.67 | 43.34 | | | | | | | Ensemble | 61.61 | 60.44 | 58.44 | 52.51 | 45.72 | | | | | | | Co-Boosting | 55.34 | 51.11 | 49.32 | 44.56 | 42.45 | | | | | | | FuseFL | 84.34 | 78.28 | 62.12 | 42.18 | 37.11 | | | | | | | IntactOFL | 79.93 | 69.11 | 64.32 | 59.45 | 53.21 | | | | | | | Ours | 88.74 | 86.96 | 85.25 | 81.32 | 75.37 | | | | | |