

Does One-shot Give the Best Shot? Mitigating Model Inconsistency in One-shot Federated Learning

¹<u>Hui Zeng</u>, ²Wenke Huang, ¹Tongqing Zhou, ¹Xinyi Wu, ²Guancheng Wan, ¹Yingwen Chen, ¹Zhiping Cai ¹National University of Defense Technology, ²Wuhan University

Background & Motivation

Heavy communication overhead in vanilla Federated Learning

- Heavy communication burden: More than 250GB for a VGG19
- High communication time: More than 194 hours for one round transmission of GPT-3

Existing One-shot Federated Learning:

- Optimization-based methods
- Distillation-based methods
- Generative methods
- Selective ensemble methods

Bottleneck: significant performance gap

Garbage in, garbage out

Background & Motivation

Model inconsistencies:

■ Intra-model inconsistency:

Intra-model inconsistency. The intra-model inconsistency of the one-shot local model on the original samples (x, y) and augmented samples (A(x), y) can be represented as:

$$\|\Delta_{intra}\|^2 \ge \|\left(p \cdot \nabla g_a \cdot \nabla A\right)^T (x - A(x))\|^2 > 0,$$

where $p = \sum_{c=1}^{C} (z_c - y_c)$, z is the prediction of w_i activated by softmax function with the augmented samples A(x), ∇g_a is the gradient of the local model w_i , and ∇A is the gradient of the data augmentation function.

■ Inter-model inconsistency:

Inter-model inconsistency. For any two client u and v with the same quantity of samples $n_u = n_v$, the one-step model deviation between the two clients $\Delta_{inter} = \nabla w_u - \nabla w_v$ can be represented as:

$$\|\Delta_{inter}\|^{2}$$

$$= \|\frac{\eta}{n_{u}} [(n_{u,c}(1 - \overline{z}_{u,c})\overline{x}_{u,c} - n_{v,c}(1 - \overline{z}_{v,c})\overline{x}_{v,c}) - (\sum_{c' \in [C_{u}] \setminus c} n_{u,c'}\overline{z}_{u,c'}\overline{x}_{u,c'} - \sum_{c' \in [C_{v}] \setminus c} n_{v,c'}\overline{z}_{v,c'}\overline{x}_{v,c'})]\|^{2}$$

$$> 0,$$

where η is the learning rate, $n_{u,c}$ and $n_{v,c}$ is the sample quantity of c-th class, c' is the negative classes except c.

Challenges & Method

Challenges #1: How can we construct a model capable of capturing invariant features and achieving stable predictions under such heterogeneous conditions?

Contribution #1: we design Self-Alignment Local Training(SALT), which employs contrastive learning and prototypes to mitigate the intra-model inconsistency.

Challenges #2: How can we effectively leverage models with parameter discrepancies in a one-shot manner?

Contribution #2: we design Informative Feature Fused Inference(IFFI), which performs feature-level fusion to mitigate the inter-model inconsistency.

Experiment Results

■ Effectiveness

Methods	CIFAR-10				CIFAR-100				Tiny-ImageNet			
	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$
MA-Echo	36.77±0.91	51.23 ± 0.28	60.14 ± 0.21	$64.21_{\pm0.23}$	19.54 ± 0.45	$29.11_{\pm0.26}$	37.77 _{±0.24}	41.94 ± 0.21	15.46±0.66	22.23±0.56	23.46±0.19	$28.21_{\pm0.42}$
O-FedAvg	$12.13_{\pm 2.11}$	$17.43_{\pm 0.51}$	$28.07_{\pm0.89}$	$35.42_{\pm0.67}$	$4.77_{\pm0.21}$	$6.45_{\pm 0.71}$	$10.67_{\pm0.31}$	$12.13_{\pm 0.05}$	5.67 _{±0.45}	$8.31_{\pm0.21}$	$13.61_{\pm0.10}$	$13.71_{\pm0.16}$
FedFisher	40.03±1.11	$47.01_{\pm 1.81}$	49.33 ± 1.52	50.34±1.32	$16.56_{\pm 2.67}$	$18.98_{\pm 2.09}$	27.24 ± 1.92	31.44±1.87	15.65±1.54	17.89 ± 1.46	19.54 ± 1.31	$20.77_{\pm 1.15}$
FedDF	35.53±0.67	41.58 ± 0.80	44.78 ± 0.60	54.58±0.73	15.07 ± 0.74	$27.17_{\pm 0.55}$	31.23 ± 0.79	35.39 ± 0.47	11.45 ± 0.40	16.32 ± 0.33	17.79 ± 0.57	27.55 ± 0.66
F-ADI	35.93±1.56	$48.35_{\pm 1.23}$	$52.66_{\pm 1.44}$	$58.78_{\pm 1.67}$	$14.65_{\pm 0.98}$	$28.13_{\pm 1.24}$	$33.18_{\pm0.67}$	39.44±1.11	13.92 _{±1.99}	$19.00_{\pm 1.78}$	$26.01_{\pm 1.44}$	29.98 ± 1.34
F-DAFL	38.32±1.40	46.34 ± 1.12	54.03 ± 1.71	59.09±2.23	$16.31_{\pm0.33}$	$26.80_{\pm 1.33}$	$34.89_{\pm 1.45}$	37.88±1.34	15.12±1.34	$19.01_{\pm 1.11}$	23.78 ± 1.23	27.98 ± 1.10
DENSE	38.37±1.08	50.26 ± 0.24	59.76 ± 0.45	62.19 ± 0.12	$18.37_{\pm 2.43}$	$32.03_{\pm 0.44}$	$37.33_{\pm0.48}$	38.84 ± 0.39	18.77±0.67	22.25 ± 0.33	28.14 ± 0.34	32.34 ± 0.32
Ensemble	41.36 ± 0.67	$45.43_{\pm0.32}$	62.18 ± 0.34	$61.61_{\pm0.23}$	$20.46_{\pm0.62}$	$26.23_{\pm 0.55}$	$38.01_{\pm 0.67}$	$41.61_{\pm 0.77}$	$13.28_{\pm0.67}$	15.38 ± 0.23	$17.53_{\pm0.31}$	$28.50_{\pm0.46}$
Co-Boosting	39.20±0.81	58.49 ± 1.24	$67.21_{\pm 1.76}$	70.24 ± 2.34	$20.19_{\pm 1.44}$	27.59 ± 1.35	$39.30_{\pm 1.30}$	$42.67_{\pm 1.40}$	19.00±1.45	$21.90_{\pm 1.20}$	29.24±1.32	30.78 ± 2.01
FuseFL	54.42±0.41	73.79 ± 0.34	84.58 ± 0.91	84.34±0.88	29.12±0.23	$36.86_{\pm0.38}$	45.12 ± 0.51	49.30 ± 0.32	22.15±2.11	29.28±2.04	33.04±1.79	34.34 ± 1.81
IntactOFL	48.22±0.43	61.13±0.63	70.21±0.60	79.93±0.23	27.99 _{±0.67}	39.15±0.46	41.86±0.60	46.78±0.78	20.45 ± 0.34	28.43±0.17	30.15±0.12	$35.09_{\pm0.14}$
Ours	71.84±1.53	77.83 _{±1.32}	84.76 _{±0.46}	88.74±0.11	31.02 ±1.17	45.48±1.01	56.65 _{±0.91}	61.07 _{±0.55}	36.96±0.92	43.62±0.77	53.32 _{±0.50}	56.48±0.32
Δ	† 17.42	↑ 6.04	↑ 0.18	†4.40	† 1.90	† 6.33	† 11.53	† 11.77	↑ 14.81	↑ 14.34	↑ 20.28	↑ 21.39

Efficiency

Scalability

Methods	Client scales m									
Methods	5	10	25	50	100					
MA-Echo	64.21	52.64	48.36	45.35	38.54					
O-FedAvg	35.42	32.09	28.03	28.24	27.14					
FedFisher	50.34	45.67	34.66	29.09	28.89					
FedDF	54.58	48.88	35.44	29.91	25.66					
F-ADI	59.34	46.33	31.83	27.66	24.89					
F-DAFL	58.59	45.45	32.88	29.98	28.91					
DENSE	62.19	54.67	49.32	48.67	43.34					
Ensemble	61.61	60.44	58.44	52.51	45.72					
Co-Boosting	55.34	51.11	49.32	44.56	42.45					
FuseFL	84.34	78.28	62.12	42.18	37.11					
IntactOFL	79.93	69.11	64.32	59.45	53.21					
Ours	88.74	86.96	85.25	81.32	75.37					

