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TLDR

We show that Normalizing Flows trained with the change of variable 
formula can work surprisingly well as generative models

Method: Transformer Autoregressive Flow (TarFlow)

Learn a deterministic function that transforms data to noise with a 
likelihood loss

Autoregressive affine transformations are invertible

Stacked autoregressive flows with alternating directions, denoted by  
Each flow is implemented with a causal (Vision) Transformer 
All flows trained end to end with the likelihood loss
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Background: Normalizing Flows

Background: Autoregressive Flows

Ablations
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z ∼ 𝒩(0,I), x = f −1(z)

Allows for sampling by reversing the function starting from noise

zi = (xi − μ(x<i)) ⊙ exp(−a(x<i))

xi = zi ⊙ exp(a(x<i)) + μ(x<i)

forward:

reverse:

They also have tractable Jacobian determinants
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Challenge: finding functions with easy to compute Jacobian determinants
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Step 1: a powerful architecture

Step 2: Gaussian noise augmented training
We found it crucial to add a small but non-negligible amount of Gaussian noise to the inputs for good sampling 
Gaussian noise densifies the training distributions and improves generalization

x ∼ pdata, ϵ ∼ 𝒩(0,Iσ2), y = x + ϵ

Step 3: Score based denoising

Model y instead of x:

Because we model the noisy inputs, samples will appear noisy as well 
We can do this without training another model — with the help of Tweedie’s formula 
If we know the density of y, then we can derive its score, which is exactly what we need for denoising

z ∼ p0, y = f −1(z), x = y + σ2 ∇ylog pmodel(y)

Step 4: Guidance

Conditional model 
Extrapolate between the conditional and unconditional predictions

Unconditional model 
Create an unconditional prediction equivalent by injecting a temperature term  
to the attention layers
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Results: SOTA Likelihood & Competitive FID
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