

Normalizing Flows are Capable Generative Models

Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng, Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, Josh Susskind ICML 2025 · Apple

TLDR

We show that Normalizing Flows trained with the change of variable formula can work surprisingly well as generative models

Background: Normalizing Flows

Learn a deterministic function that transforms data to noise with a likelihood loss

$$\min_{f} 0.5 ||f(x)||_{2}^{2} - \log(|\det(\frac{df(x)}{dx})|)$$

Allows for sampling by reversing the function starting from noise

$$z \sim \mathcal{N}(0,I), x = f^{-1}(z)$$

Challenge: finding functions with easy to compute Jacobian determinants

Background: Autoregressive Flows

Autoregressive affine transformations are invertible

forward:
$$z_i = (x_i - \mu(x_{< i})) \odot \exp(-a(x_{< i}))$$

reverse: $x_i = z_i \odot \exp(a(x_{< i})) + \mu(x_{< i})$

They also have tractable Jacobian determinants

$$\log(|\det(\frac{dz}{dx})|) = -\sum_{i} a(x_{< i})$$

Method: Transformer Autoregressive Flow (TarFlow)

Step 1: a powerful architecture

- ullet Stacked autoregressive flows with alternating directions, denoted by $\pi^t(\,\cdot\,)$
- Each flow is implemented with a causal (Vision) Transformer
- All flows trained end to end with the likelihood loss

$$\min_{f} 0.5 \|z^{T}\|_{2}^{2} + \sum_{t=0}^{T-1} \sum_{i=1}^{N-1} \sum_{j=0}^{D-1} a_{i}^{t} (\tilde{z}_{< i}^{t})$$

Step 2: Gaussian noise augmented training

- We found it crucial to add a small but non-negligible amount of Gaussian noise to the inputs for good sampling
- Gaussian noise densifies the training distributions and improves generalization

Model y instead of x: $x \sim p_{data}, \epsilon \sim \mathcal{N}(0, I\sigma^2), y = x + \epsilon$

Step 3: Score based denoising

- Because we model the noisy inputs, samples will appear noisy as well
- We can do this without training another model with the help of Tweedie's formula
- If we know the density of y, then we can derive its score, which is exactly what we need for denoising

$$z \sim p_0, y = f^{-1}(z), x = y + \sigma^2 \nabla_y \log p_{model}(y)$$

Step 4: Guidance

Conditional model

Extrapolate between the conditional and unconditional predictions

$$\tilde{\mu}_{i}^{t}(\tilde{z}_{

$$\tilde{\alpha}_{i}^{t}(\tilde{z}_{$$$$

Unconditional model

Oreate an unconditional prediction equivalent by injecting a temperature term au to the attention layers

$$\tilde{\mu}_{i}^{t}(\tilde{z}_{

$$\tilde{\alpha}_{i}^{t}(\tilde{z}_{$$$$

Results: SOTA Likelihood & Competitive FID

Table 3. Fréchet Inception Distance (FID) evaluation on Conditional ImageNet 64×64 . We denote the TARFLOW configuration in the format [P-Ch-T-K- p_{ϵ}].

Model	Type	FID ↓
EDM (Karras et al., 2022)	Diff/FM	1.55
iDDPM (Nichol & Dhariwal, 2021)	Diff/FM	2.92
ADM(dropout) (Dhariwal & Nichol, 2021)	Diff/FM	2.09
IC-GAN (Casanova et al., 2021)	GAN	6.70
BigGAN (Brock et al., 2019)	GAN	4.06
CD(LPIPS)(Song et al., 2023)	CM	4.70
iCT-deep(Song & Dhariwal, 2023)	CM	3.25
TARFLOW [4-1024-8-8- $\mathcal{N}(0, 0.05^2)$] (Ours)	NF	3.99
TARFLOW [2-768-8-8- $\mathcal{N}(0, 0.05^2)$] (Ours)	NF	2.90
TARFLOW [2-1024-8-8- $\mathcal{N}(0, 0.05^2)$] (Ours)	NF	2.66

Ablations

ImageNet256 Samples

