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Let’s make diffusion models think before generating

(a) Multimodal in-context reasoning generation (b) Multimodal composing

Predict what the next image is:

monkey +

“The girl holds a
board showing

+ 'Stop copy & paste. »
Let's Think
DIFFERENT."."

Ground truth reasoning answer: flying zebra

With large vision-language model (LVLM) + Diffusion decoder,
we get a model with strong multimodal understanding and generation capabilities.



We align a VLM (Qwen2-VL) and a diffusion decoder (Flux).

Problem 1: Dataset
Direct diffusion training needs complex multimodal reasoning datasets.

What is the next image?
graffiti icon
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Editing image pairs Multimodal reasoning samples

The reasoning capabilities will mainly come from the diffusion
training, instead of inheriting from the VLM'’s existing capabilities.



Insight 1: Shared feature space

A text-to-image diffusion model uses a LLM encoder (T5) for text encoding.
It's diffusion decoder shares the same input space with the LLM decoder.
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We can align the VLM with the LLM decoder (T5) by vision-language training.
Then the VLM is aligned with the diffusion decoder.



Training and inference

Training: align the VLM to the LLM (T5) decoder by vision-language training.
Inference: replace the LLM (T5) decoder as the diffusion decoder.

(b) ThinkDiff by vision-language training
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We only need image-text pairs for training.
But we support interleaved image and text as input in inference.



Problem 2: Transferring LVLM’s reasoning capabilities.

How to make the diffusion decoder fully inherent VLM’s capabilities?
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Only using the deep features of input tokens does not fully transfer the
reasoning information.



Insight 2: generating is reasoning

The deep features of generated tokens fully capture the reasoning process
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By aligning the deep features of VLM’s generated tokens to the diffusion decoder,
we successfully transfers the reasoning capabilities to the diffusion models.
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Problem 3: Stable training.

By adding a layer norm in the Aligner and initialize it by the parameters
of the LLM (T5) encoder, we stable the training loss.
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Problem 4: shortcut mapping issue.

When aligning the deep features of the VLM's generated tokens, the input of
the Aligner has a one-to-one correspondence with the text supervision, causing
the aligner to learn a trivial mapping.
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We use a random mask strategy for training.



Evaluation

We CoBSAT for the evaluation of the multimodal in-context reasoning
generation of ThinkDiff-LVLM.

Table 2. 4-shot CoBSAT accuracy of ThinkDiff-LVLM shows a 27% average improvement over other methods and a
4.7% increase over its 2-shot results, highlighting its ability to handle complex in-context reasoning. In contrast, SEED-
LLaMA (Ge et al., 2024), Emu (Sun et al., 2023), and GILL (Koh et al., 2024) exhibit reduced performance in 4-shot
evaluations, indicating their struggle with increased input complexity. Improvement ratios over SoTA are also provided.

Color-I Background-I ~ Style-I Action-I Texture-I

Color-II' Background-II ~ Style-II. Action-II  Texture-II

SEED-LLaMA 0.482 0.211 0.141 0.053 0.122 0.252 0.076 0.268 0.207 0.105
Emu 0.063 0.018 0.045 0.048 0.097 0.037 0.122 0.109 0.077 0.088
GILL 0.106 0.044 0.041 0.073 0.087 0.022 0.059 0.044 0.032 0.067
Ours 0.638 0.362 0.254 0.434 0.317 0.610 0.590 0.432 0.664 0.332

Improvement (A%) 32.4% 71.6% 80.1% 7189% 159.8% | 142.1% 676.3% 61.2%  220.8% 216.2%




Quality results
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A case comparing with Gemini.

P9 Robert Riachi &

@robertriachi

some cool examples with Gemini 2.0 native image output B

B+

What is the image for a dog in
the style of this picture?

Using the same style as this image, generate an image of a dog.

Google Gemini ThinkDiff-LVLM
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ThinkDiff-CLIP
What if we use CLIP as the VLM.
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(b) ThinkDiff-CLIP



Input image

ThinkDiff-CLIP
Excellent multimodal composition.
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ThinkDiff-CLIP with CogVideo
Excellent multimodal composition.

A panda, dressed in a small, red jacket and
a tiny hat, sits on a wooden stool in a serene
bamboo forest. The panda's fluffy paws
strum a miniature acoustic guitar, producing
soft, melodic tunes. Nearby, a few other

B pandas gather, watching curiously and some
§ clapping in rhythm. Sunlight filters through
the tall bamboo, casting a gentle glow on the
scene. The panda's face is expressive,

¢ showing concentration and joy as it plays.
The background includes a small, flowing
stream and vibrant green foliage, enhancing
the peaceful and magical atmosphere of this
unique musical performance.




Future work

Our method is more semantic.
However, fidelity is important for design and editing.

Modalities Fixes:i R g_;

= model compressed repfese'\h%o‘fhé
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Input ThinkDiff i

Suppose we direcHﬂ model

P(m{, Pixds, souno\)
with one big autoregressive +ransformec.

Pros:
* image 3eneadim augments
*next level dext rendeciv

“There is a speech balloon
showing ‘Meow'"

We may use intermediate VLM features to transfer more vision
information, and end-to-end diffusion training to improve the fidelity of
the generated images.
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Thanks for listening

Code
github.com/MiZhenxing/ThinkDiff
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