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◼ Why diffusion is suitable for segmentation

➢ Shape Structure Emerges through Reverse Diffusion ➔Acting on Feature Space (Intermediate convolutional features)

➢ Semantic Boundaries Form without Explicit Supervision➔Acting on Image Space   (Pixel-level edge)

➢ Noise-Induced Diversity Enhances Category Separation ➔Acting on Latent Space   (Latent after encoder compression)

(a) Counter-diffusion process at the cell level

(b) Counter-diffusion process at the tissue level
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◼ Why laplace distribution is suitable for segmentation

Figure 2. Illustration of Laplace and Gaussian distributions. The purple curve

represents the Laplace distribution with means of −1 and 1, respectively, and a

scale parameter of 0.25, while the pink curve depicts the Gaussian distribution with

means of −1 and 1 and a variance of 0.5.

Figure 1. A comparative analysis of latent feature distributions

between standard diffusion (a) and L-Diffusion (b). The latent feature

distributions for individual components across various diffusion steps

are denoted by violin plots in green, yellow, and cyan color.

➢ The sharpness of the Laplace prior promotes clearer 

inter-class separation in pixel-wise prediction tasks.
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◼ How to get distribution from counter-diffusion

(1)

(2)

(3)

(4)

q(xt-1 | xt) represents the probability

distribution of the image at the

previous moment when the noisy

image at the current moment is known.

The red box refers to the scale

parameter of the Laplace distribution,

while the blue box refers to the mean

value of the Laplace distribution. The

data distribution for category n can be

obtained after transformation
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◼ How to introduce supervised signals for Training

➢ Keep the error between the generated image and the original 

image low.

➢ Using contrastive learning, the same class is a positive sample, 

and different classes are negative samples.
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◼ Performance of L-Diffusion at the tissue and cell level

➢ L-Diffusion demonstrates strong performance in multi-category segmentation tasks



Thanks for watching!
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